

Horsley Witten Group Sustainable Environmental Solutions 90 Route 6A, Unit 1 • Sandwich, MA • 02563 Phone - 508-833-6600 • Fax - 508-833-3150 • www.horsleywitten.com

ASTM Phase I Environmental Site Assessment and Phase II Limited Subsurface Investigation

Sand Pit and Undeveloped Property

2 Sand Pit Road and 9 Noons Drive

Truro, Massachusetts

May 2023

TABLE OF CONTENTS

PHASE I ENVIRONMENTAL SITE ASSESSMENT AND PHASE II LIMITED SUBSURFACE INVESTIGATION

Sand Pit and Undeveloped Property 2 Sand Pit Road and 9 Noons Drive Truro, Massachusetts

EXECUTIVE	E SUMMARY	4	
1.0	INTRODUCTION	7	
1.1	Purpose and Scope of Work	8	
1.2	Detailed Scope of Services	8	
1.3	Significant Assumptions		
1.4	Limitations and Exceptions9		
1.5	Special Terms and Conditions1		
1.6	User Reliance	. 12	
2.0	SUBJECT PROPERTY DESCRIPTION	. 13	
2.1	Location and Legal Description	. 13	
2.2	Subject Property and Vicinity General Characteristics	. 13	
2.2.1	Topography	. 13	
2.2.2	Soils/Geology	. 13	
2.2.3	Hydrology and Constraints	. 14	
2.2.4	Wetlands	. 14	
2.2.5	Areas of Critical Environmental Concern	. 14	
2.2.6	Surface Water Bodies	. 14	
2.2.7	Flood Plains	. 14	
2.2.8	Potential for Radon Gas	. 14	
2.3	Current Use of the Property	. 14	
2.4	Descriptions of Structures, Roads, Other Improvements on the Subject		
	Property	. 15	
2.5	Current Use of Adjoining Properties	. 15	
3.0	USER PROVIDED INFORMATION	. 15	
3.1	Land Title Records	. 15	
3.2	Environmental Liens or Activity and Use Limitations	. 16	
3.3	Specialized Knowledge	. 16	
3.4	Commonly Known or Reasonably Ascertainable Information	. 16	
3.5	Valuation Reduction for Environmental Issues	. 16	
3.6	Owner, Property Manager and Occupant Information	. 16	
3.7	Reason for Performing the Study	. 16	
4.0	RECORDS REVIEW	16	

4.1	Standard Environmental Record Sources	. 17
4.1.1	State-Listed Sites	.21
4.2	Additional Environmental Records	. 22
4.2.1	Municipal Records	. 22
4.3	Historical Research	.24
4.4	Historical Use Research for Adjoining Properties	. 25
4.5	Previous Investigations/Assessments	.25
5.0	SUBJECT PROPERTY RECONNAISSANCE	. 25
5.1	Methodology and Limiting Conditions	. 25
5.2	General Subject Property Observations	. 25
5.2.1	Structures and Other Improvements at the Subject Property	. 25
5.2.2	Roads	.26
5.2.3	Strong, Pungent, or Noxious Odors and Their Sources	. 26
5.2.4	Pool of liquid	.26
5.2.5	Drums, Totes, and Intermediate Bulk Containers	. 26
5.2.6	Hazardous substances and petroleum products	.26
5.2.7	Storage Tanks	. 27
5.2.8	Floor Drains and sumps	. 27
5.2.9	pits, ponds, and lagoons	. 27
5.2.10	stained soil and stressed vegetation	. 27
5.2.11	PCB-Containing Items	. 28
5.2.12	Solid Waste	. 28
5.2.13	Subject Property Utilities	. 28
5.3	Interior Observations	. 28
5.4	Exterior Observations	. 28
5.5	Adjoining Properties and the Surrounding Area	. 29
6.0	OWNER/OPERATOR/OCCUPANT INTERVIEWS	. 30
6.1	Owner or Operator Interviews	. 30
6.2	Local Government Officials Interviews	. 30
6.3	Interviews with Others	. 30
7.0	PHASE II LIMITED SUBSURFACE INVESTIGATION	. 30
7.1	Selection of Applicable Soil and Groundwater Thresholds	.31
7.2	Test Pit Advancement	.31
7.3	Soil Boring Advancement	. 32
7.4	Monitoring Well Construction	. 32
7.5	Laboratory Results for Soil Samples	. 32
7.6	Laboratory Results for Groundwater	. 34
7.7	Conclusion of the LSI	. 35
8.0	FINDINGS AND OPINIONS	. 37
9.0	CONCLUSION	. 39
9.1	Recognized Environmental Conditions	. 39
9.2	Historical Recognized Environmental Conditions	.40

9.3	Controlled Recognized Environmental Conditions	40
9.4	Business environmental risk	40
0.0		

10.0 QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS 41

FIGURES

Figure 1 – USGS Locus

Figure 2 – Aerial Photograph

Figure 3 – Sample Locations and Groundwater Contour

Figure 4 – Soil Survey Map

Figure 5 – Existing Constraints

Figure 6 – FEMA's National Flood Hazard Layer

TABLES

Table 1- Soil Analytical Results

Table 2- Groundwater Analytical Results

APPENDICES

Appendix A – Subject Property Photographs

Appendix B – Supporting Documents

Appendix C – Environmental Data Resources, Inc. Report

Appendix D – Test Pit and Soil Boring Logs

Appendix E – Laboratory Reports

PHASE I ENVIRONMENTAL SITE ASSESSMENT AND PHASE II LIMITED SUBSURFACE INVESTIGATION Sand Pit and Undeveloped Property 2 Sand Pit Road and 9 Noons Drive Truro, Massachusetts

EXECUTIVE SUMMARY

The Horsley Witten Group ("HW") has completed this Phase I Environmental Site Assessment ("Phase I") and Phase II Limited Subsurface Investigation (Phase II LSI) documenting the observed conditions of the sand pit/undeveloped property located on a portion of 2 Sand Pit Road and 9 Noons Drive in Truro, Massachusetts (the "Subject Property").

The Subject Property consists of the following areas:

- An approximate 27-acre portion of the 38.73-acre parcel located at 2 Sand Pit Road and identified by the Truro Assessor as parcel 39-107; and
- The 17.2-acre parcel located at 9 Noons Drive and identified by the Truro Assessor as parcel 39-108.

Refer to Figures 1 and 2 for regional location and general layout of the Subject Property, respectively.

The Subject Property is located within a mixed commercial and residential area of Truro. Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded. Several piles (Photo log, Appendix A) of asphalt millings, sand, mulch (made from local landscaped debris brought to the Subject Property), shells, and aggregate are stored throughout the cleared areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the soil piles. No visual or olfactory indication of a significant release of oil and/or hazardous materials (OHM) was observed on the ground surface in the vicinity of the piles.

As indicated on Figure 3, four areas at the Subject Property are rented to local fisherman for the storage (photo log, Appendix A) of lobster traps, boats and other fishing related gear (i.e., rope and nets typically stored in plastic 55-gallon drums). According to Ms. Linda Noons-Rose (Owner of the Subject Property), boat maintenance is not permitted in the rented areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

rented areas. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the rented areas.

A pile of utility poles (Photo log, Appendix A, and Figure 3) was observed on the ground surface. Utility poles are typically treated with various coatings such as creosote, pentachlorophenol, and various metals to preserve the wood. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the utility poles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the utility poles.

Several pieces of equipment including excavators, loaders, dump trucks and spare part vehicles were observed in the northern portion of the Subject Property (photo logs, Appendix A). No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the equipment or spare part vehicles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the equipment or spare part vehicles.

A horse obstacle area is located in the northwestern portion of the Subject Property (Figure 3). The obstacles include several empty plastic 55-gallon barrels that the horses jump over. The horses live in a stable located to the northeast and off the Subject Property. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the barrels. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the barrels.

The Subject Property is abutted to the north by residences and commercial properties including a store and motel. The Subject Property is abutted to the south by residences with Noons Drive beyond. The Subject Property is abutted to the east by residences and commercial properties including Pleasant View Autobody and John F. Noons trucking with Route 6 and Noons Drive beyond. The Subject Property is abutted to the west by residences and Great Swamp with Cormorant Road beyond.

There are no buildings at the Subject Property and vehicle maintenance and fueling are completed at the property to the east (not on the Subject Property). No OHM was observed at the Subject Property. Utilities at the Subject Property include a private water well (approximately 80 feet deep, Photo Log, Appendix A and Figure 3) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds. The well was reported by the Subject Property owner as no longer in use.

No records relating to the storage, usage or releases of OHM at the Subject Property were reported to HW or on file at the Town of Truro Board of Health, Fire Department, Building Department, Conservation Commission, Planning Department or Town Clerk.

As indicated on the document titled *Settlement of Land Use Agreement*, dated August 27, 2013, Appendix B, The Subject Property has been used as sand pit since the 1950's for the excavation of sand/soil. Abutters have alleged that target shooting has historically occurred at the Subject Property. According to the Owner, "target shooting was occasionally conducted into sand piles that have long since been removed from the Subject Property". Target practice ceased at the Subject Property prior to August 27, 2013.

In February 2023, HW completed a Phase II Limited Subsurface Investigation (LSI) to determine if a release of OHM had occurred at the Subject Property. The Phase II LSI included the collection of nine soil samples and four groundwater samples for laboratory analysis. The laboratory analysis included per and polyfluoroalkyl substances (PFAS), volatile organic compounds (VOCs), semi-volatile organic compounds, Massachusetts Contingency Plan (MCP) 14 metals, extractable petroleum hydrocarbons, polynuclear aromatic hydrocarbons (PAHs), and/or polychlorinated biphenyls (PCBs).

As indicated on Tables 1 and 2, with the exception of PFAS detected in groundwater, no other analytes were detected above the applicable MCP Reportable Concentrations for category S-1 soils or GW-1 groundwater. Refer to Figure 3 for sampling locations. Additional details regarding the Phase II LSI are set forth in Section 7.

Several releases of OHM have occurred at sites located within a 1.0-mile radius of the Subject Property. Based on the regulatory status, distance from the Subject Property, and/or groundwater flow direction, these release sites appear unlikely to significantly impact the Subject Property.

Based on HW's review and interpretation of reasonably ascertainable information and observations made during the Subject Property reconnaissance, HW offers the following regarding Recognized Environmental Conditions ("RECs"), Historical Recognized Environmental Conditions ("HRECs") Controlled Recognized Environmental Conditions ("CRECs"), and Business Environmental Risks ("BERs"):

- The following RECs as defined in Section 1.1 were identified at the Subject Property:
 - The Phase II LSI concluded that groundwater at the Subject Property is impacted with PFAS above the applicable Reportable Concentration for category GW-1 groundwater. PFAS was not detected in any of the soil samples collected at the Subject Property above the laboratory Reporting Limit or the applicable Reportable Concentration for category S-1 soils. Considering that the analytical data and groundwater flow direction support the conclusion that the PFAS impacts are related to an unknown

source located hydraulically upgradient of the Subject Property, the Subject Property appears to be eligible for Downgradient Property Status Pursuant to 310 CMR 40.0180.

It should be noted that drinking water is not provided to the Subject Property. Consideration should be made for connection to the municipal drinking water supply in the future to limit groundwater pre-treatment and laboratory testing requirements should groundwater at the Subject Property be utilized.

- No Historical Recognized Environmental Conditions ("HRECs") as defined in Section 1.1 were identified at the Subject Property;
- No Controlled Recognized Environmental Conditions ("CRECs") as defined in Section 1.1 were identified at the Subject Property; and
- No Business Environmental Risks ("BERs") as defined in section 1.1 were identified at the Subject Property.

1.0 INTRODUCTION

HW has completed this Phase I in conformance with the scope and limitations of the ASTM International Publication E1527–21 on behalf of the Town of Truro (the "Client"). This report documents the results of a Phase I and Phase II LSI of the sand pit/undeveloped property located on a portion of 2 Sand Pit Road and 9 Noons Drive in Truro, Massachusetts.

The Phase I was performed in accordance with the guidelines set forth in the ASTM International Publication E1527–21, and the elements of "All Appropriate Inquiries" ("AAI") within Code of Federal Regulations 40 C.F.R. Part 312, established by the Small Business Liability Relief and Brownfields Revitalization Act of 2002 ("Brownfields Amendments") and Comprehensive Environmental Response, Conservation, and Liability Act of 1980 ("CERCLA"). The United States Environmental Protection Agency ("EPA") has determined that ASTM International E1527–21is consistent with the requirements of and may be used to comply with the provisions of AAI.

HW's evaluation of the Subject Property was performed using standard protocols and technical judgment within the scope of services of this assignment. Conclusions and/or opinions are based on the conditions observed at the time of the Subject Property visit. Past conditions that could not be observed were established based on reasonably available and attainable documents and accounts from personnel contacted.

1.1 PURPOSE AND SCOPE OF WORK

The objective of the Phase I was to identify RECs associated with current and historic use of the Subject Property, the physical conditions of adjacent grounds, and present operational practices. ASTM E1527–21defines RECs as: "(1) the presence of hazardous substances or petroleum products in, on, or at the subject property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment. A de minimis condition is not a recognized environmental condition.". Opinions regarding RECs at the Subject Property are based upon the work described herein.

If applicable, the Phase I will also identify HRECs, CRECs, and BERs. ASTM Publication E1527–21defines these as follows:

- HRECs: "a previous release of hazardous substances or petroleum products affecting the subject property that has been addressed to the satisfaction of the applicable regulatory authority or authorities and meeting unrestricted use criteria established by the applicable regulatory authority or authority or authority or authorities without subjecting the subject property to any controls (for example, activity and use limitations or other property use limitations)."
- CRECs: "recognized environmental condition affecting the subject property that has been addressed to the satisfaction of the applicable regulatory authority or authorities with hazardous substances or petroleum products allowed to remain in place subject to implementation of required controls (for example, activity and use limitations or other property use limitations)."
- BERs: "a risk which can have a material environmental or environmentally-driven impact on the business associated with the current or planned use of commercial real estate, not necessarily related to those environmental issues required to be investigated in this practice."

1.2 DETAILED SCOPE OF SERVICES

The following Phase I Scope of Work was completed during this assessment:

- Reconnaissance to observe and document present conditions at the Subject Property and on the portions of abutting properties visible from the Subject Property and/or right-of-way for indications of RECs;
- Reconnaissance of the general vicinity of the Subject Property from the right-of-

way, within approximately a 500-foot radius of the Subject Property, for indications of RECs (i.e., potential off-site contaminant source areas);

- Interviews with the designated Subject Property contact and local regulatory agencies to document current and former operations and uses of the Subject Property. Subject Property personnel interviewed as part of the assessment included:
 - o Ms. Linda Noons-Rose, Subject Property Owner
- Review of available environmental reports and other relevant documents regarding previously conducted assessments and/or investigations of the Subject Property (if available);
- Review of relevant federal, state, and local regulatory files, records, and databases to identify RECs, HRECs, CRECs, and BERs at the Subject Property;
- Contact with local regulatory agencies to request information regarding the environmental and regulatory history of the Subject Property;
- General review of environmental conditions including geology, hydrology, topography, wetlands, flood plains; and
- Preparation of this report to summarize the findings of the Phase I.

1.3 SIGNIFICANT ASSUMPTIONS

While this Phase I provides an overview of potential environmental concerns, both past and present, it is limited by the availability of information at the time of the assessment. It is possible that unreported disposal of waste or illegal activities impairing the environmental status of the Subject Property may have occurred which could not be identified. The conclusions regarding environmental conditions that are presented in this Phase I are based on a scope of work authorized by the Client.

1.4 LIMITATIONS AND EXCEPTIONS

The Phase I has been prepared in accordance with generally accepted environmental methodologies referred to in ASTM E1527–21 and contains all the limitations inherent in these methodologies. No other warranties, expressed or implied, are made as to the professional services provided under the terms of our contract and included in this report. The conclusions of this Phase I are based in part, on information provided by others. The possibility remains that unexpected environmental conditions may be encountered at the Subject Property in locations not specifically investigated. Should such an event occur, HW must be notified to determine if modifications to our conclusions are necessary.

The substance, content, and findings of documents and/or other deliverables made to the Client including but not limited to reports, data, memorandums, and facsimiles, are for the sole use of the Client. No reliance on the data or findings contained in these deliverables may be extended to any third party without the express written consent of HW. Any unauthorized use or distribution of HW's work shall be at the Client and recipient's sole risk and without liability to HW.

This Phase I and Phase II LSI describe conditions observed at the Subject Property at the time of the Subject Property reconnaissance only. HW makes no conclusions regarding areas of the Subject Property that were inaccessible or obstructed from view during the reconnaissance.

The information presented in this report is based on HW's observations in the field at the time of the Subject Property reconnaissance, a review of reasonably ascertainable documents and data, interviews with certain designated personnel, and a review of available agency files as referenced herein. HW does not warrant or guarantee the accuracy, completeness, and/or current status of the information contained in the environmental record sources for this Phase I. Such information is the product of independent investigation by parties other than HW and/or information maintained by government agencies. Therefore, no representation concerning agency records, other than those described herein, is expressed or implied.

The scope of this Phase I and Phase II LSI did not include determining the current compliance status of the Subject Property regarding all environmental regulations and/or permitting requirements. Any comments in the report regarding compliance with environmental regulations are provided for the Client and should not be considered as a thorough review of all environmental regulatory requirements.

This Phase I was a limited and non-exclusive assessment that was intended to evaluate whether reasonably ascertainable information reveals the evidence of RECs, HRECs, CRECs, and BERs as defined by ASTM E1527–21.

HW did not assess for the non-scope considerations identified in Section X6 of ASTM E1527-21 unless otherwise noted including but not limited to testing or analysis to determine the presence of asbestos containing materials ("ACM"), radon, mold, lead-based paint, lead in drinking water, or PCBs in building materials at the Subject Property. Any comments in the report regarding these substances or materials are limited to the obvious presence of certain miscellaneous materials that are readily accessible and apparent, are provided for the Client's information only, and cannot be used to determine the actual presence of the contaminants and/or compliance with applicable regulations. Further, studies of indoor air quality, regulatory compliance, occupational health and safety, and wetlands, which require specialized expertise, were not requested and were

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

not included as part of this study. As a result, without a comprehensive sampling and analysis program or implementation of services beyond the original scope of work, certain potential conditions may not be revealed.

Any qualitative or quantitative information regarding the Subject Property that was not available to HW at the time of this Phase I may result in a modification of the representations made in this report.

HW interviewed the Client about the Subject Property including the six questions included on the User Questionnaire identified in Section X3 of ASTM E1527-21. The six questions include the presence of Environmental liens, Activity and Use Limitations, specialized knowledge or experience, relationship of the purchase price to the fair market value, commonly known or reasonably ascertainable information, the degree of obviousness of the presence or likely presence of contamination and the ability to detect contamination by appropriate investigation at the Subject Property. Information about the Subject Property obtained from the Client has been incorporated into this report. A copy of the User Questionnaire is included in Appendix C.

The following limitations and exceptions to ASTM E1527–21 associated with the Phase I are set forth below:

- HW did not obtain any historical information prior to 1889 for the Subject Property;
- HW did not interview historic occupants or owners of the Subject Property. The Subject Property was utilized as a sand pit at the time of reconnaissance;
- HW did not evaluate the purchase price of the Subject Property in relation to the fair market value;
- Observations of select areas of the Subject Property were limited due to the presence of dense vegetation and material piles (i.e., soil, mulch, asphalt millings and/or aggregate;
- Current title records were obtained on-line from the Barnstable County Registry of Deeds; and
- Activity and Use Limitations (AUL) were searched for on-line using the Massachusetts Department of Environmental Protection ("MassDEP") Activity and Use Limitation searchable sites database. Additionally, the Client was unaware of any AULs implemented at the Subject Property.

None of the limitations and exceptions documented above are considered a significant data gap. Information provided by others is assumed to be accurate and complete.

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

1.5 SPECIAL TERMS AND CONDITIONS

No special terms or conditions were included in the Phase I or Phase II LSI.

1.6 USER RELIANCE

This report may be distributed and relied upon by the Client, its successors, and assignees. Reliance on the information and conclusions in this report by any other person or entity is not authorized without the written consent of HW.

2.0 SUBJECT PROPERTY DESCRIPTION

2.1 LOCATION AND LEGAL DESCRIPTION

The Subject Property is identified by the Town of Truro Assessor's Office as follows:

Addross	Town of Provincetown	Land Area
Address	Assessor's ID	(Acres)
2 Sand Pit Road	39-107-0	38.73*
9 Noons Drive	39-108-0	17.2

* It should be noted that only a 27-acre portion of this parcel is included in the Subject Property as indicated on Figure 2.

Refer to Figures 1 and 2 for regional location and general layout of the Subject Property, respectively.

2.2 SUBJECT PROPERTY AND VICINITY GENERAL CHARACTERISTICS

The Subject Property is located within a mixed commercial and residential area of Truro. Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded.

The Subject Property is abutted to the north by residences and commercial properties including a store and motel. The Subject Property is abutted to the south by residences with Noons Drive beyond. The Subject Property is abutted to the east by residences and commercial properties including Pleasant View Autobody and John F. Noons trucking with Route 6 and Noons Drive beyond. The Subject Property is abutted to the west by residences and Great Swamp with Cormorant Road beyond.

2.2.1 TOPOGRAPHY

According to the EDR Radius Map[™] Report (the "EDR Report"), published by Environmental Data Resources Inc. ("EDR"), the topography of the Subject Property slopes towards the west northwest with an elevation of 46 feet above mean sea level. A topographical map is included as Figure 1.

2.2.2 SOILS/GEOLOGY

According to the Commonwealth of Massachusetts Bureau of Geographical Information ("MassGIS"), soils underlying the Subject Property are classified as Carver, Freetown and Pits (Figure 4). According to the EDR Report, Carver soils are classified as coarse sands with high infiltration rates and Freetown is muck with very slow infiltration rates. Pits are areas which have been modified and soil type and infiltration rates are not given.

2.2.3 HYDROLOGY AND CONSTRAINTS

According to the MassGIS Existing Constraints data layer, the Subject Property is located within an EPA Sole Source Aquifer and a medium yield aquifer. A portion of the property is located within a MassDEP Wellhead Zone II Area (Figure 5). As indicated in Section 7.0, depth to groundwater varies from approximately 36 to 82 feet below grade and flows in a southwesterly direction as indicated on Figure 3.

2.2.4 WETLANDS

According to the MassGIS Existing Constraints Data layer, wetlands are located within 500 feet west of the Subject Property (Figure 5).

2.2.5 AREAS OF CRITICAL ENVIRONMENTAL CONCERN

According to the MassGIS Areas of Critical Environmental Concern ("ACEC") data layer, there are no ACECs within 500 feet of the Subject Property. ACECs are places in Massachusetts that receive special recognition because of the quality, uniqueness, and significance of their natural and cultural resources (Figure 5). These areas are identified and nominated at the community level and are reviewed and designated by the Massachusetts Secretary of Energy and Environmental Affairs.

2.2.6 SURFACE WATER BODIES

The nearest surface water body is Great Swamp which is located approximately 300 feet west of the Subject Property (Figure 1).

2.2.7 FLOOD PLAINS

According to the Mass GIS Flood Zone Map (Figure 5), the Subject Property is located within an area designated as Zone X (area of minimal flood hazard) and an area of 0.2% Annual Chance of Flooding immediately west of the Subject Property.

2.2.8 POTENTIAL FOR RADON GAS

According to the U.S. Environmental Protection Agency's ("EPA") Map of Radon Zones for Massachusetts (<u>https://www.epa.gov/sites/production/files/2014-</u>08/documents/massachusetts.pdf), Barnstable County is considered to have a moderate potential for the presence of indoor radon gas, with the most common concentration range being 2 Pico Curies per liter (pCi/L) to 4 pCi/L).

2.3 CURRENT USE OF THE PROPERTY

The Subject Property is currently a sand pit and commercial property utilized by the trucking/site development contractor, John F. Noons.

2.4 DESCRIPTIONS OF STRUCTURES, ROADS, OTHER IMPROVEMENTS ON THE SUBJECT PROPERTY

Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded. Several piles (Photo log, Appendix A) of asphalt millings, sand, mulch (made from local landscaped debris brought to the Subject Property), shells, and aggregate are stored throughout the cleared areas.

There are no buildings at the Subject Property and vehicle maintenance and fueling are completed at the property to the east (not on the Subject Property). No OHM was observed at the Subject Property. Utilities at the Subject Property include a private water well (approximately 80 feet deep, Photo Log, Appendix A) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds. The well was reported by the Subject Property Owner as no longer in use.

2.5 CURRENT USE OF ADJOINING PROPERTIES

The Subject Property is abutted to the north by residences and commercial properties including a store and motel. The Subject Property is abutted to the south by residences with Noons Drive beyond. The Subject Property is abutted to the east by residences and commercial properties including Pleasant View Autobody and John F. Noons trucking with Route 6 and Noons Drive beyond. The Subject Property is abutted to the west by residences and Great Swamp with Cormorant Road beyond.

3.0 USER PROVIDED INFORMATION

3.1 LAND TITLE RECORDS

Chains of title were established based on information from the property field card obtained from the Town of Truro Assessor's Department and on-line records available from the Barnstable County Registry of Deeds. Ownership for the Subject Property is as follows:

- The Estate of Donald Noons, Book 279 Page 34, dated February 8, 2007 (2 Sand Pit Road).
- The Estate of Donald Noons, Book 10833 Page 307, dated February 8, 2007 (9 Noons Drive).

Copies of the Town of Truro Assessor's Office property field card and deed references are included in Appendix B.

3.2 Environmental Liens or Activity and Use Limitations

Pursuant to the guidelines set forth in the ASTM International Publication E1527 – 21, it is the user's responsibility to search for environmental liens and AULs. Neither the study nor the user identified any environmental liens or Activity and Use Limitations associated with the Subject Property.

3.3 SPECIALIZED KNOWLEDGE

No other specialized knowledge of RECs or other potential environmental concerns were reported by the Client.

3.4 COMMONLY KNOWN OR REASONABLY ASCERTAINABLE INFORMATION

Information provided in the Phase I is based on interviews with Subject Property contacts and research of local, state, and federal databases. Commonly known or reasonably ascertainable information was utilized in conducting background research for the Subject Property but was not relied upon to support the findings, opinions, or conclusions of the Study.

3.5 VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES

No property valuation reduction relating to environmental concerns was identified or reported by the Client to HW.

3.6 OWNER, PROPERTY MANAGER AND OCCUPANT INFORMATION

According to the Town of Truro Assessor's Office, the Estate of Donald W Noons is the current owners of the Subject Property. At the time of reconnaissance, approximately 80 percent of the Subject Property was cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded. HW was escorted by the current Owner, Ms. Linda Noons-Rose, who manages the sand pit operations conducted at the Subject Property.

3.7 REASON FOR PERFORMING THE STUDY

The Phase I and Phase II LSI was performed for due diligence purposes by the Client in anticipation of purchasing the Subject Property.

4.0 RECORDS REVIEW

To evaluate environmental conditions at and abutting the Subject Property, federal, state, and local information resources were reviewed. Initial screening of regulatory records was conducted by obtaining an EDR Report. A copy of the EDR Report dated January 19, 2023 is included as Appendix C.

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

HW staff also performed a review of available files and/or contacted personnel at the Town of Truro Assessor's Office, Town Clerk, Fire Department, Conservation Commission, Planning Department, Board of Health, and Building Department regarding underground storage tanks (USTs), above ground storage tanks (ASTs) and the storage, usage and/or release(s) of OHM at the Subject Property.

4.1 STANDARD ENVIRONMENTAL RECORD SOURCES

NPL (Superfund)

The National Priorities List ("NPL") is a listing of confirmed disposal sites identified by the EPA that are a priority for cleanup under the Superfund Program. The NPL is a subset of Comprehensive Environmental Response Compensation and Liability Information System ("CERCLIS") maintained by the EPA. No NPL sites were identified within a 1.0-mile radius of the Subject Property.

Delisted NPL

Delisted NPL sites are no longer active under the Superfund Program. An archived status indicates that EPA has determined that no further steps are required at a site to protect human health or the environment. The area within a 0.5-mile radius of the Subject Property was searched for Delisted NPL sites. Based on a review of the listings obtained from the EDR Report, there are no Delisted NPL sites located within the 0.5-mile search radius.

CERCLA-SEMS

CERCLA-Superfund Enterprise Management System ("SEMS") tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program. The area within a 0.5-mile radius of the Subject Property was searched for CERCLA-SEMS sites. Based on a review of the listings obtained from the EDR Report, there were no CERCLA-SEMS sites located within a 0.5-mile radius of the Subject Property.

SEMS-ARCHIVE

SEMS-Archive tracks sites that are no longer active under the Superfund Program. An archived status indicates that to the best of EPA's knowledge, site assessment has been completed and EPA has determined no further steps will be taken to list the site on the NPL. The area within a 0.5-mile radius of the Subject Property was searched for SEMS-Archive sites. Based on a review of the listings obtained from the EDR Report, there is one SEMS-Archive site located within the 0.5-mile search radius. The identified SEMS-

Archive site is Watts Service CTR/S Hollow Wellfield located at 372 Route 6, approximately 1,424 feet north, northeast of the Subject Property. The site is listed as no further remedial action planed and does not qualify for the NPL based on exiting information; however, it is associated with a release (RTN 4-170) as a result of a leaking underground storage tank (LUST) and is discussed in additional detail below. This site does not qualify for the National Priority List (NPL) based on existing information.

RCRA Corrective Action (CA) Sites with Known Contamination

Based on a review of the EDR Report, there are no Resource Conservation and Recovery Act ("RCRA") CA site listed within 1.0-mile of the Subject Property.

Federal RCRA Generators

Resource Conservation and Recovery Act ("RCRA") - Large Quantity Generators (LQGs)

Based on a review of the EDR Report, there are no RCRA-LQG site located within 0.25miles of the Subject Property.

RCRA-Small Quantity Generators (SQGs)

Based on a review of the EDR Report, there are no RCRA-SQG site located within 0.25miles of the Subject Property.

RCRA-Very Small Quantity Generators (VSQGs)

Based on a review of the EDR Report, there is one RCRA-VSQG site located within 0.25miles of the Subject Property. The identified RCRA-VSQG site is Tow Boat US Provincetown/Chatham/Bass River located at 352 Route 6, approximately 596 feet east of the Subject Property. According to the EDR Report, the site has not received any violation notices.

RCRA Treatment, Storage, and Disposal (TSD) Sites for Hazardous Materials

Based on a review of the EDR Report, there are no RCRA TSD sites listed within 0.5-miles of the Subject Property.

State Landfills and Solid Waste Disposal Facilities (SWL)

Based on a review of the EDR Report, there are no active SWL sites listed within 0.5miles of the Subject Property.

State List of Leaking Aboveground Storage Tanks (LAST)

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

Based on a review of the EDR Report, there is one LAST site listed within 0.5-miles of the Subject Property. The identified LAST site is identified as North Truro Post Office. Details regarding the release site are set forth below.

North Truro Post Office 34 Shore Road

2,363 feet north RTN: 4-11029

According to the report titled *Response Action Outcome Statement* dated July 1995 and Immediate Response Action (IRA) Completion Statement dated August 1995, both prepared by EMCON, a release of approximately 190 gallons of No 2. fuel oil occurred from an above-ground storage tank (AST) at the site. Response actions included removing the AST, excavation of 160-cubic yards of contaminated soil, extraction of 3,700-gallons of petroleum impacted groundwater and the collection of soil and groundwater samples for laboratory analysis. Groundwater at the site was determined to flow in a northwesterly direction. The reports concluded that levels of OHM at the site have been remediated to background and that a condition of No Significant Risk of harm to health, safety, public welfare and the environment has been achieved. Considering the regulatory status, distance, and the groundwater flow direction, the release associated with RTN 4-11029 is unlikely to significantly impact the Subject Property.

State List of Leaking Underground Storage Tanks (LUST)

Based on a review of the EDR Report, there is one LUST site listed within a 0.5-mile radius of the Subject Property. The identified LUST site is Watts Service Ctr/R Hollow Wellfield. Details regarding the release site are set forth below.

Watts Service Ctr/S Hollow Wellfield 372 Route 6

1,424 feet north northeast RTN: 4-170

According to the letter report titled *Field Investigation Services Report* dated December 1996 and prepared by ABB Environmental Services, Inc., an "old leaking gasoline tank" was removed from the site in 1978 and at the request of the MassDEP, the former tank location was assessed to determine if a release of OHM has occurred. Response actions included the collection of soil and groundwater samples for laboratory analysis. Groundwater was determined to flow in a northeasterly direction. The MassDEP subsequently issued a response action outcome indicating that a permanent solution has been achieved at the site and a level of No Significant Risk exists. Considering the regulatory status and the groundwater flow direction, the release associated with RTN 4-170 is unlikely to significantly impact the Subject Property.

State Registered Underground Storage Tank (UST)

Based on a review of the EDR Report, there are no State Registered USTs at the Subject Property or within 0.25-miles of the Subject Property.

State Registered Above Ground Storage Tank (AST)

Based on a review of the EDR Report, there are no State Registered ASTs at the Subject Property or listed within 0.25-miles of the Subject Property.

Emergency Response Notification System Files

The Emergency Response Notification System ("ERNS") database includes incidents reported to the National Response Center for the Subject Property only. These incidents include chemical spills, accidents involving chemicals (such as fires or explosions), oil spills, transportation accidents that involve oil or chemicals, releases of radioactive materials, sightings of oil sheens on bodies of water, terrorist incidents involving chemicals, incidents where illegally dumped chemicals have been found, and drills intended to prepare responders to handle these kinds of incidents. The National Response Center is operated by the U.S. Coast Guard and has become the central point of contact used for the reporting of many different kinds of incidents involving hazardous materials. The Subject Property is not identified as an ERNS site.

State and Tribal Brownfields

The Brownfields Act of 1998 established significant liability relief and financial incentives to spur the redevelopment of Brownfields, while ensuring that MassDEP standards are met. According to the EDR Report, there are no State and Tribal Brownfields sites listed within 0.5-miles of the Subject Property.

State Institutional Control/Engineering Control Registries Sites (INST/ECR)

According to the EDR Report, there is one INST/ECR site listed within 0.5-miles of the Subject Property. The site is identified as South Highland Road Landfill. Details regarding the release site is set forth below.

South Highland Road Landfill Highland Rd

2,548 feet east, northeast RTN: 4-897

According to the report titled *Phase IV As-Built and Final Inspection Report* dated April 2005 and prepared by East Cape Engineering, Inc., this release site was previously operated as a municipal open burn dump from 1940 until 1964. Investigation and

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

response actions included test pits, groundwater monitoring and soil sampling, and ultimately an engineered barrier was used to cap the former dump. The cap consisted of sand fill, obtained from the Subject Property, Claymax 200 liner, organic material, and hydroseed. Groundwater was not substantially impacted and an AUL was implemented to limit contact with soil and to maintain a level of No Significant Risk. Considering the regulatory status, distance, at that groundwater was not significantly impacted, the release associated with RTN 4-897 is unlikely to significantly impact the Subject Property.

4.1.1 STATE-LISTED SITES

State-and Tribal-equivalent CERCLA and/or Hazardous Waste Facilities (SHWS)

HW reviewed information from the EDR Report, dated January 19, 2023, and the MassDEP website to gather information, including documented releases of OHM at the Subject Property and surrounding properties. The Subject Property is not listed as a release site. According to the EDR Report, seven State-equivalent SHWS release sites with documented releases of OHM were identified within a 1.0-mile radius of the Subject Property. Details regarding select release sites are set forth below.

Roadway – Vehicle Accident628 feet eastIn Front 350 Route 6RTN: 4-20912

According to the report titled *Immediate Response Action Completion Statement* dated January 2008 and prepared by Bennett O'Reilly, Inc., approximately 35 gallons of diesel fuel was released onto the asphalt paved roadway on the northbound lane of Route 6. Response actions included the application of absorbents, catch basin cleaning and soil sample collection. Groundwater was reportedly not impacted by the release. A Method 1 Risk Assessment determined that a level of "No Significant Risk" exists for the site. Considering the extent of the release and that groundwater was not reportedly impacted, the release associated with RTN 4-20912 is unlikely to significantly impact the Subject Property.

WTP So. Hollow Wellfield 11 South Hollow Road

According to the report titled *Immediate Response Action Completion* dated May 2005 and prepared by Bennett O'Reilly, Inc., a release of 5-8 gallons of Potassium Hydroxide (KOH) occurred to the ground surface and interior walls, as a result of a failure in the fill line from a tank. Response actions included the recovery and removal of approximately 75+/- gallons of KOH and safety shower rinse water, soil excavation and sampling, and additional spraying, containerizing, and disposal of the corrosive liquid. A Method 1 Risk

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts 2,852 feet northeast

RTN: 4-18962

Assessment determined that the site has reached a level of "No Significant Risk". Considering the extent of the release and that groundwater was not reportedly impacted, the release associated with RTN 4-18962 is unlikely to significantly impact the Subject Property.

4.2 Additional Environmental Records

RCRA NonGEN/NLR

RCRA NonGen/NLRs are facilities, which do not presently generate hazardous waste or are no longer regulated under RCRA. Based on a review of these records, there is one RCRA NonGen/NLR site listed within 0.25-miles of the Subject Property. The identified RCRA NonGen/NLR site is Provincetown Water located at the Junction of Route 6 and 6A, approximately 1,043 feet east, northeast of the Subject Property. According to the EDR Report, the site has not received any violation notices.

Hazardous Waste Generator (HW GEN)

A HW GEN is a generator of hazardous waste and waste oil that registered or notified MassDEP. Based on a review of these records, there is one HW GEN site located within 0.25-miles of the Subject Property. The identified HW GEN site is Tow Boat US located at 352 Route 6, approximately 596 feet east of the Subject Property. According to the EDR Report, the site has not received any violation notices.

4.2.1 MUNICIPAL RECORDS

Readily available records relating to the past and present use of the Subject Property were obtained from select municipal offices provided by the Client (the Town of Truro). Information gathered is presented below and copies of relevant information are available in Appendix B.

Truro Assessor's Office

The Subject Property is identified by the Town of Truro Assessor's Office as follows:

Addross	Town of Provincetown	Land Area
Address	Assessor's ID	(Acres)
2 Sand Pit Road	39-107-0	38.73*
9 Noons Drive	39-108-0	17.2

* It should be noted that only a 27-acre portion of this parcel is included in the Subject Property as indicated on Figure 2.

Assessor cards obtained from the Town of Truro Assessor's Office are located in Appendix B.

Truro Fire Department

According to the Town of Truro, there are records relating to the Subject Property at the Fire Department.

Truro Board of Health

According to the Town of Truro, there are records relating to the Subject Property at the Board of Health.

<u> Truro Town Clerk</u>

According to the Town of Truro, there are records relating to the Subject Property at the Town Clerk.

Truro Building Department

Records obtained from the Truro Building Department included the document titled *Settlement of Land Use Agreement*, dated August 27, 2013, Appendix B. This document detailed the use of the Subject Property as a sand pit since the 1950's for the excavation of sand/soil. Abutters have alleged that target shooting has historically occurred at the Subject Property. According to the Owner, "target shooting was occasionally conducted into sand piles that have long since been removed from the Subject Property". Target practice ceased at the Subject Property prior to August 27, 2013. Other files included in the record were not related to the current or historic use of OHM at the Subject Property.

Truro Planning Department

According to the Town of Truro, there are records relating to the Subject Property at the Planning Department.

Truro Conservation Commission

According to the Town of Truro, there are records relating to the Subject Property at the Conservation Commission.

4.3 HISTORICAL RESEARCH

Sanborn Fire Insurance Maps

According to EDR, the Subject Property is located within an unmapped area. A copy of the EDR Report including the Sanborn Fire Insurance Map report dated December 19, 2022, is included as Appendix C.

USGS Topographical Maps

USGS topographic maps dated 1889, 1898, 1944, 1948/1949, 1958, 1972, 1977, 2012, 2015, and 2018 were reviewed. The 1889 and 1898 depict an unimproved road transecting the Subject Property in an east/west direction and then centrally to the north. No buildings are depicted on the Subject Property. The 1944 through 1958 maps depict the unimproved road transecting the property in an east/west direction. No buildings are indicated on the Subject Property. The Subject Property is labeled as "Sandpit" in the 1972 topographical map. The 1977 map is depicted as an aerial and does not show topography. A roadway (Sand Pit Road) is depicted as transecting the northeast portion and the southern portion (Noons Drive) of the Subject Property on the 2012 and 2018 maps. A copy of the EDR Report including topographical maps dated December 19, 2022 is included as Appendix C.

Aerial Photographs

Aerial Photographs dated 1938, 1952, 1960, 1971, 1977, 1985, 1991, 1995, 2010, 2014, and 2018 were reviewed. The 1938 aerial photograph depicts the Subject Property as mostly vegetated with the exception of some roads/paths and several localized cleared areas. The 1952 aerial indicates substantial clearing of vegetation has occurred in the central portion of the Subject Property. The 1960 and 1971 aerial photograph depicts a majority of the Subject Property has been cleared. The 1977 through 2018 aerial depict a clearing in the central portion of the Subject Property. What appear to be soil stockpiles and containers/vehicles are evident in the 1985 through 2018 aerial photographs. Due to the scale and quality of the aerials, addital features of the Subject Property are not discernable. A copy of the EDR Report including aerial photographs dated December 20, 2022 is included as Appendix C.

City Directories

City Directories dated 1984, 1989, 1992, 1995, 2000, 2005, 2010, 2014, and 2017 were reviewed for the Subject Property. The Subject Property address of 2 Sand Pit Road was not included in any of the city directories reviewed.

4.4 HISTORICAL USE RESEARCH FOR ADJOINING PROPERTIES

Topographic maps and aerial photographs depict the area surrounding the Subject Property developed with roads as early as 1889 and with structures in 1938. More substantial developments, including both commercial and residential properties, appear in the aerial maps between 1971 and 2010. Due to the scale and quality of the aerial photographs, addital features of the adjoining properties are not discernable.

4.5 Previous Investigations/Assessments

HW was not provided with any previous investigations or assessments.

5.0 SUBJECT PROPERTY RECONNAISSANCE

The purpose of the Subject Property reconnaissance was to observe and document features and conditions at the Subject Property and in the immediately surrounding areas. Emphasis was placed on observing any conditions that indicate the potential for RECs. Select photographs of the Subject Property are included as Appendix A.

5.1 METHODOLOGY AND LIMITING CONDITIONS

On January 18, 2023, Bryan Massa of HW conducted a Subject Property reconnaissance during daylight hours. The purpose of the reconnaissance was to visually and/or physically observe features and conditions at the Subject Property and within the surrounding areas with particular focus on areas that may be the cause of RECs, such as OHM storage areas. Mr. Massa was escorted by the Owner and Client. Questions regarding the Subject Property were answered by the Owner. Observations of the Subject Property in select areas were limited due to dense wooded areas and dense vegetation. A copy of Mr. Massa's resume is included in Appendix B.

5.2 GENERAL SUBJECT PROPERTY OBSERVATIONS

The Subject Property is located within a mixed commercial and residential area of Truro. Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded.

5.2.1 STRUCTURES AND OTHER IMPROVEMENTS AT THE SUBJECT PROPERTY

With the exception of a shed used to cover a water well (approximately 80 feet deep, Photo Log, Appendix A) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds and that is reported by the Subject Property Owner as no longer in use, no structures or improvements were observed at the Subject Property during the reconnaissance.

5.2.2 ROADS

Several unpaved roads transect the Subject Property that are used for the sand pit operation. Access to the Subject Property is from Sand Pit Road and Noons Drive.

5.2.3 Strong, Pungent, or Noxious Odors and Their Sources

No strong, pungent, or noxious odors were observed at the Subject Property during the reconnaissance.

5.2.4 POOL OF LIQUID

No pools of liquid were observed at the Subject Property during the reconnaissance.

5.2.5 DRUMS, TOTES, AND INTERMEDIATE BULK CONTAINERS

As indicated on Figure 3, four areas at the Subject Property are rented to local fisherman for the storage (photo log, Appendix A) of lobster traps, boats and other fishing related gear (i.e., rope and nets typically stored in plastic 55-gallon drums). According to the Subject Property Owner, boat maintenance and not permitted in rented areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the rented areas. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the rented areas.

A horse obstacle area (Figure 3) is located in the northwestern portion of the Subject Property. The obstacles include several empty plastic 55-gallon barrels that the horses jump over. The horses live in a stable located to the northeast and off the Subject Property. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the barrels. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the barrels.

Additionally, as indicated in Section 7.0, testing of the soil at the Subject Property for various contaminants of concern (COCs) including PFAS, VOCs, SVOCs, EPH, MCP 14 metals, PAHs and/or PCBs, did not detect any COCs in soil above the applicable regulatory thresholds.

5.2.6 HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS

A pile of utility poles (Photo log, Appendix A) was observed on the ground surface at the location indicated on Figure 3. Utility poles are typical treated with various coatings such as creosote, pentachlorophenol, and various metals to preserve the wood. No stressed vegetation (with the exception of typical weather-related stresses) or stained

soil was observed in the vicinity of the utility poles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the utility poles.

Several pieces of equipment including excavators, loaders, dump trucks and spare part vehicles were observed in the northern portion of the Subject Property as depicted on the photo logs, Appendix A. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the equipment or spare part vehicles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the equipment or spare part vehicles.

No other indications of OHM were observed at the Subject Property. Additionally, as indicated in Section 7.0, testing of the soil at the Subject Property for various COCs including PFAS, VOCs, SVOCs, EPH, MCP 14 metals, PAHs and/or PCBs, did not detect any COCs in soil above the applicable regulatory thresholds.

5.2.7 STORAGE TANKS

No storage tanks were observed at the Subject Property during the reconnaissance.

5.2.8 FLOOR DRAINS AND SUMPS

No floor drains or sumps were observed at the Subject Property during the reconnaissance.

5.2.9 PITS, PONDS, AND LAGOONS

The Subject Property is an active sand pit where native soil is mined for resale purposes. No ponds or lagoons were observed at the Subject Property during the reconnaissance.

5.2.10 STAINED SOIL AND STRESSED VEGETATION

No stained soil or stressed vegetation (with the exception of typical weather-related stresses) was observed at the Subject Property during the reconnaissance.

Several piles (Photo log, Appendix A) of asphalt millings, sand, mulch (made from local landscaped debris brought to the Subject Property), shells, and aggregate are stored throughout the cleared areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the soil piles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the piles. Additionally, testing of the soil at the Subject Property for various COCs) including PFAS, VOCs, SVOCs, EPH, MCP 14 metals, PAHs and/or PCBs, did not detect any COCs in soil above the applicable regulatory thresholds.

5.2.11 PCB CONTAINING ITEMS

No indication of transformers, capacitors or light ballasts were identified at the Subject Property. The hydraulic equipment utilized at the Subject Property for sand pit operations is unlikely to contain PCBs. Additionally, testing of the surface soil as detailed in Section 7.0 did not detect any PCBs above the laboratory reporting limits.

5.2.12 SOLID WASTE

No indication of significant solid waste disposal was observed on the ground surface at the Subject Property.

5.2.13 SUBJECT PROPERTY UTILITIES

Utilities at the Subject Property include a private water well (approximately 80 feet deep, Photo Log, Appendix A) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds. The well was reported by the Subject Property Owner as no longer in use.

5.3 INTERIOR OBSERVATIONS

With the exception of a shed used to cover a water well (approximately 80 feet deep, Photo Log, Appendix A) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds and that is reported by the Subject Property Owner as no longer in use, no structures or improvements were observed at the Subject Property during the reconnaissance.

5.4 EXTERIOR OBSERVATIONS

- The Subject Property is located within a mixed commercial and residential area of Truro. Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded. Several piles (Photo log, Appendix A) of asphalt millings, sand, mulch (made from local landscaped debris brought to the Subject Property), shells, and aggregate are stored throughout the cleared areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the soil piles. No visual or olfactory indication of a significant release OHM was observed on the ground surface in the vicinity of the piles.
- As indicated on Figure 3, four areas at the Subject Property are rented to local fisherman for the storage (photo log, Appendix A) of lobster traps, boats and other fishing related gear (i.e., rope and nets typically stored in plastic 55-gallon drums). According to the Subject Property Owner, boat maintenance and not permitted in rented areas. No stressed vegetation (with the exception of typical

weather-related stresses) or stained soil was observed in the vicinity of the rented areas. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the rented areas.

- A pile of utility poles (Photo log, Appendix A) was observed on the ground surface at the location indicated on Figure 3. Utility poles are typically treated with various coatings such as creosote, pentachlorophenol, and various metals to preserve the wood. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the utility poles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the utility poles.
- Several pieces of equipment including excavators, loaders, dump trucks and spare part vehicles were observed in the northern portion of the Subject Property as depicted on the photo logs, Appendix A. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the equipment or spare part vehicles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the equipment or spare part vehicles.
- A horse obstacle area (Figure 3) is located in the northwestern portion of the Subject Property. The obstacles include several empty plastic 55-gallon barrels that the horses jump over. The horses live in a stable located to the northeast and off the Subject Property. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the barrels. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the barrels.
- The Subject Property is abutted to the north by residences and commercial properties including a store and motel. The Subject Property is abutted to the south by residences with Noons Drive beyond. The Subject Property is abutted to the east by residences and commercial properties including Pleasant View Autobody and John F. Noons trucking with Route 6 and Noons Drive beyond. The Subject Property is abutted to the west by residences and Great Swamp with Cormorant Road beyond.
- A photo log of observations is included in Appendix A.

5.5 Adjoining Properties and the Surrounding Area

Surrounding properties include Pleasant View Autobody, John F. Noons trucking/site development, a motel, store, residences, and wooded land. No visual observations of RECs were observed on these properties from the right-of-way.

6.0 Owner/Operator/Occupant Interviews

6.1 OWNER OR OPERATOR INTERVIEWS

On January 18, 2023, HW conducted a reconnaissance of the Subject Property. The following people associated with the Subject Property were interviewed:

• Ms. Linda Noons-Rose, Owner of the Subject Property

Information provided by the Subject Property contact is included in other sections of this report. A user questionnaire completed by the Client is included in Attachment B.

6.2 LOCAL GOVERNMENT OFFICIALS INTERVIEWS

The Client (Town of Truro) provided records when available from the Assessor's Office, Fire Department, Board of Health, Town Clerk, Planning Department, Conservation Commission, and the Building Department to review records associated with the Subject Property. Details concerning the municipal records review is set forth above.

6.3 INTERVIEWS WITH OTHERS

No other interviews were conducted in connection with this Phase I report.

7.0 PHASE II LIMITED SUBSURFACE INVESTIGATION

HW completed a Phase II LSI at the request of the Client to determine if a reportable release of OHM consistent with the MCP has occurred as a result of the following:

- The historic operation of the Subject Property as a sand pit where off-site soils were potentially brought onto the Subject Property and then sold.
- The potential for lead impacts related to the historic use of portions of the Subject Property for target shooting.
- The potential for wood treatment chemicals to have leached from stockpiled utility poles to the subsurface.
- The potential for incidental spillage from several pieces of equipment including excavators, loaders, dump trucks, boats and spare part vehicles over the last 70 years.
- The potential for groundwater to be impacted from historic operations at the Subject Property or from an unknown off-site source.

Details of the Phase II LSI are presented below.

7.1 SELECTION OF APPLICABLE SOIL AND GROUNDWATER THRESHOLDS

The Massachusetts Contingency Plan (MCP) identifies two reporting categories for soil (RCS-1 and RCS-2) and two for groundwater (RCGW-1 and RCGW-2). Details for each reporting category is set forth below.

Soil Reporting Categories

The MCP defines RCS-1 as soil samples obtained:

- At or within 500 feet of a residential dwelling, a residentially-zoned property, school, playground, recreational area or park; or
- Within the geographic boundaries of a groundwater resource area categorized as RCGW- 1 in 310 CMR 40.0362(1)(a).

The MCP defines RCS-2 as soil samples:

• That are not obtained from category RCS-1 areas.

Groundwater Reporting Categories

The MCP defines RCGW-1 as groundwater samples obtained:

- within a Current Drinking Water Source Area; or
- within a Potential Drinking Water Source Area.

The MCP defines RCGW-2 as groundwater samples:

• That are not obtained from category RCGW-1 areas.

Considering that the Subject Property is located with 500-feet of a residential dwelling and is located within a Current or Potential Drinking Water Source Area, RCS-1 and RCGW-1 are the appropriate reporting categories for the Subject Property.

7.2 TEST PIT ADVANCEMENT

On February 2, 2023, 11 test pits were excavated at the Subject Property (TP-1 through TP-11) to a maximum depth of ten feet below grade at the locations indicated on Figure 3. Soil samples were continuously collected in 2-foot intervals and field screened for total organic vapors (TOV) using a photoionization detector (PID) using the jar headspace method. TOV PID values ranged from less than the detection limit of the equipment (<0.1 parts per million volume ppmv] to a maximum of 2.3 ppmv.

While no significant visual or olfactory evidence of a release of OHM was noted in any of the test pit locations, trace evidence of plastic, brick and/or wood debris were identified in TP-5 (4-6 feet below grade) and TP-6 (0.5 to 2 feet below grade and 4 to 6 feet below grade). Groundwater was not encountered in any of the test pits. Test pit logs are included in Appendix D.

7.3 SOIL BORING ADVANCEMENT

Between February 10 and 15, 2023 three soil borings were advanced at the Subject Property (SB-1 through SB-3) to a maximum depth of 77 feet below grade at the locations indicated on Figure 3. Soil samples were continuously collected in 2-foot intervals and field screened for TOV with a PID using the jar headspace method. TOV PID values ranged from less than the detection limit of the equipment (<0.1 ppmv) to a maximum of 0.6 ppmv.

No significant visual or olfactory evidence of a release of OHM was noted in any of the boring locations. Groundwater was encountered in the borings at depths ranging from 28 to 72 feet below grade. Soil boring logs are included in Appendix D

7.4 MONITORING WELL CONSTRUCTION

Soil borings SB-1 through SB-3 (Figure 3) were completed as permanent groundwater monitoring wells MW-1 through MW-3, respectively. The monitoring wells were constructed of 2-inch diameter PVC casing with 10 feet of 0.010-inch slotted screen positioned to roughly bi-sect the groundwater table. Prior to sampling, depth to groundwater was determined using a water level and the monitoring wells were developed with a submersible pump.

The monitoring wells were then purged of five well volumes with a peristaltic pump utilizing low flow sampling methodologies. After purging was complete, groundwater samples were collected in laboratory provided sample containers and placed on ice under chain of custody procedures. Groundwater samples collected for VOCs were collected with a disposable bailer, and groundwater samples for dissolved metals analysis were field filtered with a 0.45-micron filter prior to preservation.

HW returned to the Subject Property on February 22, 2023 to survey the location and elevation of the wells. Based on the survey data, groundwater was determined to flow in a southwesterly direction as indicated on Figure 3.

7.5 LABORATORY RESULTS FOR SOIL SAMPLES

During test pit excavation, soil samples were selected based on a combination of factors including visual/olfactory observations, TOV PID and/or representative depth and

surficial distribution. Soil samples were submitted to a Massachusetts certified laboratory for PFAS, VOCs, SVOCs, MCP 14 metals, VOCs, EPH, PAHs, and/or PCBs. Soil boring logs and test pit logs are included in Appendix D and the location of the soil borings and test pits are included on Figure 3. Details of the soil laboratory results are set forth below.

<u>PFAS</u>

PFAS was not detected above the laboratory reporting limit in any of the four soil samples submitted for analysis. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

<u>VOCs</u>

VOCs were not detected above the laboratory reporting limit in any of the two soil samples submitted for analysis. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

<u>SVOCs</u>

SVOCs were not detected above the laboratory reporting limit in any of the two soil samples submitted for analysis. All laboratory reporting limits were below the applicable RCS-1 threshold with the exception of biphenyl. biphenyl is not a contaminant of concern, and the elevated laboratory reporting limit is not considered a concern. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

MCP 14 Metals

Select MCP 14 metals were detected in all nine soil samples above the laboratory reporting limit and below the applicable RCS-1. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

<u>EPH</u>

EPH was detected in two of the nine soil samples above the laboratory reporting limit and below the applicable RCS-1. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts

<u>PAHs</u>

PAHs were detected in three of the nine soil samples above the laboratory reporting limit and below the applicable RCS-1. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

<u>PCBs</u>

PCBs were not detected above the laboratory reporting limit in any of the two soil samples submitted for analysis. All laboratory reporting limits were below the applicable RCS-1 threshold. Tabulated soil analytical data is included on Table 1, and the laboratory analytical report is included in Appendix E.

7.6 LABORATORY RESULTS FOR GROUNDWATER

SB-1 through SB-3 were completed as permanent 2-inch diameter groundwater monitoring well MW-1 through MW-3, respectively. Groundwater samples were submitted to a Massachusetts certified laboratory for PFAS, VOCs, SVOCs, MCP 14 metals, VOCs, EPH, PAHs, and/or PCBs. Monitoring well construction logs are included in Appendix D and the location of the monitoring wells are included on Figure 3. Details of the groundwater laboratory results are set forth below.

<u>PFAS</u>

PFAS was detected above the laboratory reporting limit in all three groundwater samples submitted for laboratory analysis and above the RCGW-1 threshold in sample MW-1. All laboratory reporting limits were below the applicable RCGW-1 threshold. Tabulated groundwater analytical data is included on Table 2 and the laboratory analytical report is included in Appendix E.

To verify the detection of PFAS in groundwater sample MW-1, the sample was recollected one month later and reanalyzed by the laboratory for PFAS. The sample contained a similar concentration of PFAS that was above the RCGW-1.

<u>VPH</u>

VPH was not detected above the laboratory reporting limit in any of the three groundwater samples submitted for laboratory analysis. All laboratory reporting limits were below the applicable RCGW-1 threshold. Tabulated groundwater analytical data is included on Table 2 and the laboratory analytical report is included in Appendix E.

<u>VOCs</u>

VOCs were not detected above the laboratory reporting limit in any of the three groundwater samples submitted for laboratory analysis. With the exception of 1,2-dibromoethane and 1,4-dioxane, all laboratory reporting limits were below the applicable RCGW-1 threshold. Considering no petroleum related VOCs or chlorinated solvents were detected in any of the groundwater samples submitted for laboratory analysis, the elevated laboratory reporting limit for 1,2-dibromoethane and 1,4-dioxane are not considered a concern. Tabulated groundwater analytical results are included on Table 2 and the laboratory analytical report is included in Appendix E.

Dissolved MCP 14 Metals

Dissolved barium was detected in two of the three groundwater samples submitted for laboratory analysis above the laboratory reporting limit and below the applicable RCGW-1. All laboratory reporting limits were below the applicable RCGW-1 threshold. Tabulated groundwater analytical data is included on Table 2 and the laboratory analytical report is included in Appendix E.

<u>EPH</u>

EPH was not detected above the laboratory reporting limit in any of the three groundwater samples submitted for laboratory analysis. All laboratory reporting limits were below the applicable RCGW-1 threshold. Tabulated groundwater analytical data is included on Table 2 and the laboratory analytical report is included in Appendix E.

<u>PAHs</u>

PAHs were not detected above the laboratory reporting limit in any of the three groundwater samples submitted for laboratory analysis. All laboratory reporting limits were below the applicable RCGW-1 threshold. Tabulated groundwater analytical data is included on Table 2 and the laboratory analytical report is included in Appendix E.

7.7 CONCLUSION OF THE LSI

Based on the analytical results documented above, a reportable release of OHM consistent with MCP has occurred at the Subject Property. The release is consistent with the notification requirements of 310 CMR 40.0315 "Releases which Require Notification within 120 days". As indicated above, the Subject Property does not have a drinking water well, there a no known drinking water wells located within 500 feet and as indicated on Figure 3, the Subject Property is not located within a Zone I.
Pursuant to 310 CMR 40.0331, the following persons shall notify the MassDEP in accordance with 310 CMR 40.0300 of a release or threat of release of OHM:

- The owner or operator of a vessel or a site from or at which there is or has been a release or threat of release of oil and/or hazardous material;
- Any person who at the time of storage or disposal of any hazardous material owned or operated any site at or upon which such hazardous material was stored or disposed of and from which there is or has been a release or threat of release of hazardous material;
- Any person who by contract, agreement, or otherwise, directly or indirectly, arranged for the transport, disposal, storage or treatment of hazardous material to or in a site or vessel from or at which there is or has been a release or threat of release of hazardous material;
- Any person who, directly or indirectly, transported any hazardous material to transport, disposal, storage or treatment vessels or sites from or at which there is or has been a release or threat of release of such material;
- Any person who otherwise caused or is legally responsible for a release or threat of release of oil and/or hazardous material from a site or vessel;
- Any fiduciary who holds title to or possession of a site or vessel from or at which there is or has been a release or threat of release of oil and/or hazardous material;
- Any secured lender who holds title to or possession of a site or vessel from or at which there is or has been a release or threat of release of oil and/or hazardous material;
- Any agency of the Commonwealth or any public utility company that owns a right of way that is a site from or at which there is or has been a release or threat of release of oil and/or hazardous material; and
- Any person otherwise required to notify the Department of a release or threat of release pursuant to M.G.L. c. 21E.

Based on the notification requirements above, the Client would become a person required to notify within 120 days of taking ownership of the Subject Property. Considering that PFAS was not detected in any of the soil samples collected at the Subject Property above the laboratory Reporting Limit and that the analytical data and groundwater flow direction support the conclusion that the PFAS impacts are related to an unknown source located hydraulically upgradient of the Subject Property, the Subject Property appears to be eligible for Downgradient Property Status Pursuant to 310 CMR 40.0180.

It should be noted that drinking water is not provided to the Subject Property. Consideration should be made for connection to the municipal drinking water supply in the future to limit groundwater pre-treatment and laboratory testing requirements should groundwater at the Subject Property be utilized for consumption.

8.0 FINDINGS AND OPINIONS

- HW has completed this Phase I and Phase II LSI documenting the observed conditions of the sand pit/undeveloped property located on a portion of 2 Sand Pit Road and 9 Noons Drive in Truro, Massachusetts.
- The Subject Property is located within a mixed commercial and residential area of Truro. Approximately 80 percent of the Subject Property is cleared and utilized as a sandpit with the remaining 20 percent undeveloped and wooded. Several piles (Photo log, Appendix A) of asphalt millings, sand, mulch (made from local landscaped debris brought to the Subject Property), shells, and aggregate are stored throughout the cleared areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the soil piles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the piles.
- As indicated on Figure 3, four areas at the Subject Property are rented to local fisherman for the storage (photo log, Appendix A) of lobster traps, boats and other fishing related gear (i.e., rope and nets typically stored in plastic 55-gallon drums). According to Ms. Linda Noons-Rose (Owner of the Subject Property), boat maintenance is not permitted in the rented areas. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the rented areas. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the rented areas.
- A pile of utility poles (Photo log, Appendix A, and Figure 3) was observed on the ground surface. Utility poles are typically treated with various coatings such as creosote, pentachlorophenol, and various metals to preserve the wood. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the utility poles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the utility poles.
- Several pieces of equipment including excavators, loaders, dump trucks and spare part vehicles were observed in the northern portion of the Subject

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts Horsley Witten Group, Inc. May 10, 2023 Property (photo logs, Appendix A). No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the equipment or spare part vehicles. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the equipment or spare part vehicles.

- A horse obstacle area is located in the northwestern portion of the Subject Property (Figure 3). The obstacles include several empty plastic 55-gallon barrels that the horses jump over. The horses live in a stable located to the northeast and off the Subject Property. No stressed vegetation (with the exception of typical weather-related stresses) or stained soil was observed in the vicinity of the barrels. No visual or olfactory indication of a significant release of OHM was observed on the ground surface in the vicinity of the barrels.
- The Subject Property is abutted to the north by residences and commercial properties including a store and motel. The Subject Property is abutted to the south by residences with Noons Drive beyond. The Subject Property is abutted to the east by residences and commercial properties including Pleasant View Autobody and John F. Noons trucking with Route 6 and Noons Drive beyond. The Subject Property is abutted to the west by residences and Great Swamp with Cormorant Road beyond.
- There are no buildings at the Subject Property and vehicle maintenance and fueling are completed at the property to the east (not on the Subject Property). No OHM was observed at the Subject Property. Utilities at the Subject Property include a private water well (approximately 80 feet deep, Photo Log, Appendix A and Figure 3) that was reportedly used for dust suppression and to rinse dirt off of vehicle truck beds. The well was reported by the Subject Property owner as no longer in use.
- No records relating to the storage, usage or releases of OHM at the Subject Property were reported to HW or on file at the Town of Truro Board of Health, Fire Department, Building Department, Conservation Commission, Planning Department or Town Clerk.
- As indicated on the document titled *Settlement of Land Use Agreement*, dated August 27, 2013, Appendix B, The Subject Property has been used as sand pit since the 1950's for the excavation of sand/soil. Abutters have alleged that target shooting has historically occurred at the Subject Property. According to the Owner, "target shooting was occasionally conducted into sand piles that have long since been removed from the Subject Property". Target practice ceased at the Subject Property prior to August 27, 2013.

- In February 2023, HW completed a Phase II Limited Subsurface Investigation (LSI) to determine if a release of OHM had occurred at the Subject Property. The Phase II LSI included the collection of nine soil samples and four groundwater samples for laboratory analysis. The laboratory analysis included PFAS, VOCs, SVOCs, VPH, MCP 14 metals, EPH, PAHs, and/or PCBs.
- As indicated on Tables 1 and 2, with the exception of PFAS detected in groundwater, no other analytes were detected above the applicable MCP Reportable Concentrations for category S-1 soils or GW-1 groundwater. Refer to Figure 3 for sampling locations. Additional details regarding the Phase II LSI are set forth in Section 7 including details on the required MassDEP release notification requirements.
- Several releases of OHM have occurred at sites located within a 1.0-mile radius of the Subject Property. Based on the regulatory status, distance from the Subject Property, and/or groundwater flow direction, these release sites appear unlikely to significantly impact the Subject Property.

9.0 CONCLUSION

HW offers no opinion on unreported releases which may have occurred on or adjacent to the Subject Property, releases that occurred prior to reliable documentation of releases, or releases for which no additional records or information was readily available.

9.1 RECOGNIZED ENVIRONMENTAL CONDITIONS

HW has performed a Phase I Environmental assessment in general conformance with the scope and limitations of ASTM International E 1527-21 of the Subject Property. Any exceptions to this practice are described in Section 1.4. This assessment has revealed no evidence of the Recognized Environmental Conditions in connection with the Subject Property with the exception of the following:

• The Phase II LSI concluded that groundwater at the Subject Property is impacted with PFAS above the applicable Reportable Concentration for category GW-1 groundwater. PFAS was not detected in any of the soil samples collected at the Subject Property above the laboratory Reporting Limit or the applicable Reportable Concentration for category S-1 soils. Considering that the analytical data and groundwater flow direction support the conclusion that the PFAS impacts are related to an unknown source located hydraulically upgradient of the Subject Property, the Subject Property appears to be eligible for Downgradient Property Status Pursuant to 310 CMR 40.0180.

Phase I Environmental Site Assessment Sand Pit and Undeveloped Property Truro, Massachusetts It should be noted that drinking water is not provided to the Subject Property. Consideration should be made for connection to the municipal drinking water supply in the future to limit groundwater pre-treatment and laboratory testing requirements should groundwater at the Subject Property be utilized.

9.2 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS

HW has performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM International E 1527-21 of the Subject Property. Any exceptions to this practice are described in Section 1.4. This assessment has revealed no evidence of Historical Recognized Environmental Conditions in connection with the Subject Property.

9.3 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS

HW has performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM International E 1527-21 of the Subject Property. Any exceptions to this practice are described in Section 1.4. This assessment has revealed no evidence of controlled Recognized Environmental Conditions in connection with the Subject Property.

9.4 BUSINESS ENVIRONMENTAL RISK

This assessment has revealed no evidence of Business Environmental Risk in connection with the Subject Property except for the following:

• Several releases of OHM have occurred at sites located within a 1.0-mile radius of the Subject Property. Based on the regulatory status, distance from the Subject Property, and/or groundwater flow direction, these release sites appear unlikely to significantly impact the Subject Property.

10.0 QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

I declare that to the best of my professional knowledge and belief, I meet the definition of *Environmental Professional* as defined in Code of Federal Regulations 40 C.F.R. 312.10, and, I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 C.F.R. 312.

)Man q

Bryan Massa, LSP Senior Environmental Professional

Figure 1 – USGS Locus

Figure 2 – Aerial Photograph

Figure 3 – Sample Locations and Groundwater Contour

Figure 4 – Soil Survey Map

Figure 5 – Existing Constraints

Figure 6 – FEMA's National Flood Hazard Layer

Figure 3

Date: 5/3/2023

Document Path: H:\Projects\2022\22129 Sand Pit Road Truro\GIS\Maps\FEMA.mxd

TABLES Table 1- Soil Analytical Results Table 2- Groundwater Analytical Results

Table 1 - Soil Analytical Results Sand Pit Road, Truro MA

Sample Designation			TP-2 (2-4')	TP-3 (0-2')	TP-5 (0-2')	TP-5 (6-8')	TP-6 (0-2')	TP-8 (2-4')	TP-9 (0-2')	TP-10 (6-8)	TP-11 (0-2')
Sample Date Sample Depth			2/2/2023 2-4'	2/2/2023 0-2'	2/2/2023 0-2'	2/2/2023 6-8'	2/2/2023 0-2'	2/2/2023 2-4'	2/2/2023 0-2'	2/2/2023 6-8'	2/2/2023 0-2'
TOV PID			0.3	0.1	0.2	0.3	0.3	2.3	0.1	0.1	0.1
Soil Standards		MCP RCS-1				S	Sample Results	3			
PFAS Perfluorobutanoic acid (PFBA)	ua/ka	NA	0.19 U	NS	0.19 U	NS	0.18 U	NS	0.17 U	NS	NS
Perfluorobutanesulfonic acid (PFBS)	µg/kg	NA	0.17 U	NS	0.16 U	NS	0.15 U	NS	0.15 U	NS	NS
Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)	µg/kg µg/kg	NA NA	0.16 U 0.17 U	NS NS	0.16 U 0.16 U	NS NS	0.15 U 0.16 U	NS NS	0.15 U 0.15 U	NS NS	NS NS
8:2 Fluorotelomersulfonic acid (8:2FTS A)	µg/kg	NA	0.21 U	NS NS	0.2 U	NS NS	0.19 U	NS NS	0.19 U	NS	NS NS
6:2 Fluorotelomer sulfonate (6:2 FTS)	µg/kg µg/kg	NA	0.17 U 0.24 U	NS	0.17 U	NS	0.10 U	NS	0.10 U	NS	NS
Perfluorodecanesulfonic acid (PFDS) Perfluoroundecanoic acid (PFUnA)	µg/kg	NA NA	0.23 U	NS NS	0.22 U	NS NS	0.21 U	NS NS	0.2 U 0 14 U	NS NS	NS NS
Perfluoroheptanoic acid (PFHpA)	µg/kg	0.5	0.16 U	NS	0.10 U	NS	0.10 U	NS	0.14 U	NS	NS
Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA)	µg/kg µa/ka	0.3	0.22 U 0.16 U	NS NS	0.21 U 0.16 U	NS NS	0.2 U 0.15 U	NS NS	0.2 U 0.15 U	NS NS	NS NS
Perfluorooctanoic acid (PFOA)	µg/kg	0.72	0.16 U	NS	0.15 U	NS	0.15 U	NS	0.14 U	NS	NS
Perfluorodecanoic Acid (PFDA)	µg/kg µg/kg	0.3	0.29 U 0.17 U	NS	0.29 U 0.17 U	NS NS	0.27 U 0.16 U	NS	0.26 U 0.15 U	NS NS	NS
Sum of Six Total PEAS	µg/kg	NA NA	ND ND	NS NS	ND ND	NS NS	ND ND	NS NS	ND ND	NS NS	NS NS
Volatile Organic Compounds (VOCs)	μg/Ng										
1,1,1,2-Tetrachloroethane	mg/kg ma/ka	0.1	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	NS NS
1,1,2,2-Tetrachloroethane	mg/kg	0.005	NS	NS	<0.0011	NS	NS	<0.0011	NS	NS	NS
1,1,2-i richloroethane	mg/kg mg/kg	0.1	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	NS NS
1,1-Dichloroethylene	mg/kg	3	NS	NS	<0.0044	NS	NS	<0.0043	NS	NS	NS
1,2,3-Trichlorobenzene	mg/kg	NA	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
1,2,3-Trichloropropane	mg/kg mg/kg	100	NS NS	NS NS	<0.0022	NS NS	NS NS	<0.0022	NS NS	NS NS	NS NS
1,2,4-Trimethylbenzene	mg/kg	1,000	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	mg/kg mg/kg	<u> </u>	NS NS	NS NS	<0.0022	NS NS	NS NS	<0.0022 <0.0011	NS NS	NS NS	NS NS
1,2-Dichlorobenzene	mg/kg	9	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
1,2-Dichloropropane	mg/kg mg/kg	0.1	NS NS	NS NS	<0.0022	NS NS	NS NS	<0.0022	NS NS	NS NS	NS NS
1,3,5-Trimethylbenzene	mg/kg	NA 3	NS NS	NS NS	<0.0022	NS NS	NS NS	<0.0022	NS NS	NS NS	NS NS
1,3-Dichloropropane	mg/kg	500	NS	NS	<0.0011	NS	NS	<0.0011	NS	NS	NS
1,4-Dichlorobenzene 1.4-Dioxane	mg/kg ma/ka	0.7	NS NS	NS NS	<0.0022 <0.11	NS NS	NS NS	<0.0022 <0.11	NS NS	NS NS	NS NS
2,2-Dichloropropane	mg/kg	NA	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
2-Chlorotoluene	mg/kg mg/kg	4 100	NS	NS NS	<0.044	NS NS	NS	<0.043	NS NS	NS NS	NS NS
2-Hexanone (MBK) 4-Chlorotoluene	mg/kg mg/kg	100 NA	NS NS	NS NS	<0.022	NS NS	NS NS	<0.022	NS NS	NS NS	NS NS
4-Methyl-2-pentanone (MIBK)	mg/kg	0.4	NS	NS	<0.022	NS	NS	<0.022	NS	NS	NS
Acetone Benzene	mg/kg mg/kg	<u> </u>	NS NS	NS NS	<0.11 <0.0022	NS NS	NS NS	<0.11 <0.0022	NS NS	NS NS	NS NS
Bromobenzene	mg/kg	100	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
Bromodichloromethane	mg/kg	0.1	NS	NS	<0.0022	NS NS	NS	<0.0022	NS	NS NS	NS
Bromoform Bromomethane	mg/kg mg/kg	0.1	NS NS	NS NS	<0.0022 <0.011	NS NS	NS NS	<0.0022	NS NS	NS NS	NS NS
Carbon Disulfide	mg/kg	100	NS	NS	<0.011	NS	NS	<0.011	NS	NS	NS
Carbon Tetrachloride Chlorobenzene	mg/kg mg/kg	5	NS NS	NS NS	<0.0022	NS NS	NS NS	<0.0022	NS NS	NS NS	NS NS
Chlorodibromomethane Chloroethane	mg/kg	0.005	NS NS	NS NS	<0.0011	NS NS	NS NS	<0.0011	NS NS	NS NS	NS NS
Chloroform	mg/kg	0.2	NS	NS	<0.0022	NS	NS	<0.022	NS	NS	NS
Chloromethane cis-1.2-Dichloroethylene	mg/kg ma/ka	<u>100</u> 0.1	NS NS	NS NS	<0.011 <0.0022	NS NS	NS NS	<0.011 <0.0022	NS NS	NS NS	NS NS
cis-1,3-Dichloropropene	mg/kg	0.01	NS	NS	<0.0011	NS	NS	<0.0011	NS	NS	NS
Dichlorodifluoromethane	mg/kg mg/kg	1,000	NS	NS NS	<0.0022	NS NS	NS	<0.0022	NS NS	NS NS	NS NS
Diethyl Ether Diisopropyl Ether	mg/kg	100	NS NS	NS NS	<0.022	NS NS	NS NS	<0.022	NS NS	NS NS	NS NS
Ethylbenzene	mg/kg	40	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
Hexachlorobutadiene Isopropylbenzene	mg/kg mg/kg	30 1,000	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	NS NS
m+p Xylene Method text Duttid Ether	mg/kg	NA	NS	NS	< 0.0044	NS	NS	<0.0043	NS	NS	NS
Methylene Chloride	mg/kg	0.1	NS	NS	<0.0044	NS NS	NS	<0.0043	NS NS	NS NS	NS NS
Naphthalene n-Butylbenzene	mg/kg mg/kg	4 NA	NS NS	NS NS	<0.0044	NS NS	NS NS	<0.0043	NS NS	NS NS	NS NS
n-Propylbenzene	mg/kg	100	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
o-Xylene p-Isopropyltoluene	mg/kg mg/ka	NA 100	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	<0.0022 <0.0022	NS NS	NS NS	NS NS
sec-Butylbenzene	mg/kg	NA	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
tert-Amyl Methyl Ether (TAME)	mg/kg	3 NA	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
tert-Butyl Ethyl Ether (TBEE)	mg/kg	NA	NS NS	NS NS	<0.0011	NS NS	NS NS	<0.0011	NS NS	NS NS	NS NS
Tetrachloroethylene	mg/kg	1	NS	NS	<0.0022	NS	NS	<0.0022	NS	NS	NS
l etrahydroturan Toluene	mg/kg ma/ka	500 30	NS NS	NS NS	<0.011 <0.0022	NS NS	NS NS	<0.011 <0.0022	NS NS	NS NS	NS NS
trans-1,2-Dichloroethylene	mg/kg	1	NS	NS	< 0.0022	NS	NS	<0.0022	NS	NS	NS
Trichloroethylene	mg/kg	0.01	NS	NS	<0.0011	NS	NS	<0.0011	NS	NS	NS
Trichlorofluoromethane	mg/kg ma/ka	1,000 0.7	NS NS	NS NS	<0.011 <0.011	NS NS	NS NS	<0.011	NS NS	NS NS	NS NS

Table 1 - Soil Analytical Results Sand Pit Road, Truro MA

Sample Designation			TP-2 (2-4')	TP-3 (0-2')	TP-5 (0-2')	TP-5 (6-8')	TP-6 (0-2')	TP-8 (2-4')	TP-9 (0-2')	TP-10 (6-8)	TP-11 (0-2')		
Sample Date			2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023		
			2-4	0-2	0-2	0-8	0-2	2-4	0-2	0-8	0-2		
Soil Standards		MCP RCS-1	0.0	0.1	0.2	<u> </u>	Sample Results	Imple Results					
Comiveletile Organia Compoundo (S)/OC													
Semivolatile Organic Compounds (SVOC	s)	2	NS	NS	<0.27	NC	<0.26	NS	NC	NS	NS		
1,2,4- Inchorobenzene	ma/ka	9	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
1,2-Diphenylhydrazine	mg/kg	NA	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
1,3-Dichlorobenzene	mg/kg	3	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
1,4-Dichlorobenzene	mg/kg	0.7	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
2,4,5-1 richlorophenol	mg/kg	4	NS NS	NS	< 0.37	NS	< 0.36	NS NS	NS NS	NS	NS NS		
2,4,6- Inchiorophenol	mg/kg	0.7	NS	NS NS	<0.37	NS NS	<0.36	NS NS	NS NS	NS NS	NS		
2,4-Dimethylphenol	mg/kg	0.7	NS	NS	< 0.37	NS	<0.36	NS	NS	NS	NS		
2,4-Dinitrophenol	mg/kg	3	NS	NS	<0.72	NS	<0.7	NS	NS	NS	NS		
2,4-Dinitrotoluene	mg/kg	0.7	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
2,6-Dinitrotoluene	mg/kg	100	NS NS	NS	<0.37	NS	< 0.36	NS NS	NS NS	NS	NS		
2-Chlorophenol	ma/ka	0.7	NS	NS	<0.37	NS	< 0.36	NS	NS	NS	NS		
2-Methylnaphthalene	mg/kg	0.7	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
2-Methylphenol	mg/kg	500	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
2-Nitrophenol	mg/kg	100	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
3,3-DICNIOROBENZIGINE	mg/kg	3			<0.19		<0.18						
4-Bromophenvlphenvlether	ma/ka	100	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
4-Chloroaniline	mg/kg	1	NS	NS	<0.72	NS	<0.7	NS	NS	NS	NS		
4-Nitrophenol	mg/kg	100	NS	NS	<0.72	NS	<0.7	NS	NS	NS	NS		
Acenaphthene	mg/kg	4	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
	mg/kg	1		NS NS	<0.19	NS NS	<0.18		NS NS	NS	NS NS		
Aniline	ma/ka	1,000	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Anthracene	mg/kg	1,000	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Benzo(a)anthracene	mg/kg	7	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Benzo(a)pyrene	mg/kg	2	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Benzo(b)iluorantnene	mg/kg mg/kg	/ 1.000	NS NS	NS NS	<0.19	NS NS	<0.18		NS NS	NS NS	NS NS		
Benzo(k)fluoranthene	ma/ka	70	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Biphenyl	mg/kg	0.05	NS	NS	<0.073	NS	<0.071	NS	NS	NS	NS		
Bis(2-chloroethoxy)methane	mg/kg	500	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
Bis(2-chloroethyl)ether	mg/kg	0.7	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Bis(2-chlorolsopropyl)ether Bis(2-Ethylbexyl)phthalate	mg/kg mg/kg	90	NS NS	NS NS	<0.37	NS NS	<0.30	NS NS	NS NS	NS NS	NS NS		
Butylbenzylphthalate	mg/kg	100	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Chrysene	mg/kg	70	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Dibenz(a,h)anthracene	mg/kg	0.7	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Dibenzofuran Diathulahthalata	mg/kg	100	NS NS	NS	<0.37	NS	<0.36	NS NS	NS NS	NS	NS		
Dimethylphthalate	mg/kg mg/kg	0.7	NS	NS NS	<0.37	NS NS	<0.36	NS NS	NS	NS NS	NS		
Di-n-butylphthalate	mg/kg	50	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
Di-n-octylphthalate	mg/kg	1,000	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Fluoranthene	mg/kg	1,000	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Hexachlorobenzene	mg/kg	1,000			<0.19		<0.18						
Hexachlorobutadiene	ma/ka	30	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Hexachloroethane	mg/kg	0.7	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Indeno(1,2,3-cd)pyrene	mg/kg	7	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Isophorone	mg/kg	100	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Nitrobenzene	mg/kg mg/kg	<u>4</u> 500	NS NS	NS NS	<0.19	NS NS	<0.16	NS NS	NS NS	NS NS	NS NS		
Pentachlorophenol	mg/kg	3	NS	NS	<0.37	NS	<0.36	NS	NS	NS	NS		
Phenanthrene	mg/kg	10	NS	NS	<0.19	NS	<0.18	NS	NS	NS	NS		
Phenol	mg/kg	1	NS	NS	< 0.37	NS	< 0.36	NS	NS	NS	NS		
Pyrene	mg/kg	1,000	NS NS	NS NS	<0.19	NS NS	<0.18	NS NS	NS NS	NS	NS NS		
Metals	nig/kg	500	110	113	<0.57	113	<0.30	110	110	113	110		
Antimony	ma/ka	20	<1.8	<1.7	<1.8	<1.8	<1.7	<2.0	<1.7	<1.7	<1.6		
Arsenic	mg/kg	20	<3.6	<3.4	<3.6	<3.6	<3.4	<4.0	<3.4	<3.4	<3.2		
Barium	mg/kg	1,000	8.2	2.2	7.2	9.8	6.2	9.6	2.3	3.6	2.1		
Beryllium	mg/kg	90	0.19	< 0.17	<0.18	0.22	0.17	0.27	< 0.17	< 0.17	<0.16		
Caomium	mg/Kg mg/kg	100	<0.36 6.5	<0.34	<0.36 ว	<0.36 6.1	<0.34 5.4	<0.40 6	<0.34 1 7	<0.34 1 7	<0.32 3.1		
Lead	ma/ka	200	4.5	5.0	8.3	6.4	3.4	3	1.2	1.4	1.6		
Mercury	mg/kg	20	<0.028	0.041	<0.028	<0.027	<0.026	<0.031	< 0.026	<0.027	<0.026		
Nickel	mg/kg	600	3.5	0.74	1.9	2.8	3	4	1.8	2.4	3.1		
Selenium Silver	mg/kg	400	<3.6	<3.4	<3.6	<3.6	<3.4	<4.0	<3.4	<3.4	<3.2		
Thallium	mg/Kg	100 8	<0.30 <1 8	<0.34 <1.7	<0.30 <1 8	<0.30	<0.34 <1 7	<0.40 <2 0	<0.34 <1.7	<∪.34 ∠1 7	<0.32 <1.6		
Vanadium	ma/ka	400	6.9	2.0	4	8.9	6.7	7.4	2.6	2.5	3.7		
Zinc	mg/kg	1,000	47	3.8	14	9.7	8.9	11	5.8	6.6	6.8		

Table 1 - Soil Analytical Results Sand Pit Road, Truro MA

Sample Designation		TP-2 (2-4')	TP-3 (0-2')	TP-5 (0-2')	TP-5 (6-8')	TP-6 (0-2')	TP-8 (2-4')	TP-9 (0-2')	TP-10 (6-8)	TP-11 (0-2')		
Sample Date			2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	2/2/2023	
Sample Depth			2-4'	0-2'	0-2'	6-8'	0-2'	2-4'	0-2'	6-8'	0-2'	
TOV PID			0.3	0.1	0.2	0.3	0.3	2.3	0.1	0.1	0.1	
Soil Standards MCP RCS-1				Sample Results								
Extractable Petroleum Hydrocarbo	ons											
C9-C18 Aliphatics	ma/ka	1.000	<11	<11	<11	<11	<11	<12	<10	<11	<10	
C19-C36 Aliphatics	ma/ka	3.000	<11	<11	<11	<11	<11	<12	<10	<11	<10	
C11-C22 Aromatics	ma/ka	1.000	<11	13	15	<11	<11	<12	<10	<11	<10	
Polycyclic Aromatic Hydrocarbons	<u> </u>	.,	<u> </u>						1			
2-Methylnaphthalene		0.7	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Acenaphthene	ma/ka	4	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Naphthalene	ma/ka	4	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Phenanthrene	ma/ka	10	<0.11	0.22	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Acenaphthylene	mg/kg	1	<0.11	0.18	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Anthracene	mg/kg	1,000	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Benzo(a)anthracene	mg/kg	7	<0.11	0.21	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Benzo(a)pyrene	mg/kg	2	<0.11	0.23	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Benzo(b)fluoranthene	mg/kg	7	<0.11	0.39	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Benzo(g,h,i)perylene	mg/kg	1,000	<0.11	0.18	0.14	0.17	<0.11	<0.12	<0.10	<0.11	<0.10	
Benzo(k)fluoranthene	mg/kg	70	<0.11	0.14	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Chrysene	mg/kg	70	<0.11	0.29	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Dibenzo(a,h)Anthracene	mg/kg	0.7	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Fluoranthene	mg/kg	1,000	<0.11	0.46	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Fluorene	mg/kg	1,000	<0.11	<0.11	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Indeno(1,2,3-cd)Pyrene	mg/kg	7	<0.11	0.2	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Pyrene	mg/kg	1,000	<0.11	0.46	<0.11	<0.11	<0.11	<0.12	<0.10	<0.11	<0.10	
Polychlorinated Biphenyls (PCBs)												
PCB 1016	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1221	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1232	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1242	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1248	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1254	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1260	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	
PCB 1262	mg/kg	1	NS	NS	<0.088	NS	< 0.085	NS	NS	NS	NS	
PCB 1268	mg/kg	1	NS	NS	<0.088	NS	<0.085	NS	NS	NS	NS	

Notes:

μg/kg = Micrograms per kilogram
 mg/kg = Milligrams per kilogram

3. MCP = Massachusetts Contingency Plan

4. RCS-1 = The Reportable Concentration for category S-1 soils as documented in the 2019 MCP

5. Bold indicates concentration exceeds applicable Method 1 Standard.

6. Bold and underlined concentrations were Not Detected but reporting limits exceed Method 1 standard

7. $\overline{\langle \langle \rangle}$ = Not detected by the laboratory above the reporting limit. Laboratory reporting limit shown.

8. U = Not detected by the laboratory above the method detection limit. Laboratory method detection limit shown.

9. TOV PID = Total Organic Vapors, Photoionization Detector Calibrated to Benzene

10. ND = Not Detected

- 11. NA = Not Applicable
- 12. NS = Not Sampled
- 13. Sum of six includes estimated values and does not include non-detects (U or <). SUM of Six PFAS includes PFUnA, PFHpA, PFHxS, PFNA, PFOA, PFOS AND PFDA.
- 14. Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Table 2 - Groundwater Analytical Results Sand Pit Road, Truro MA

Sample Designation	M	W-1	MW-2	MW-3				
Sample Date			2/15/2023	3/15/2023	2/15/2023	2/15/2023		
Depth to Water (ft)			73.34	73.13	52.35	28		
Total Well Depth (ft)			82.0	82.0	60.64	36.35		
Groundwater Standards		MCP RCGW-1	Sample Results					
Per- and Polyfluoroalkyl Substances								
Perfluorobutanoic acid (PFBA)	µg/L	NA	0.0059	0.00548	0.00234	0.00576		
Perfluoroheptanesulfonic Acid (PFHpS)	µg/L	NA	0.00511	0.00362	0.000628 U	0.000646 U		
Perfluorobutanesultonic acid (PFBS)	µg/L	NA	0.0109	0.00962	0.000336 J	0.00112 J		
Perfluoropentanoic acid (PFPeA)	µg/∟		0.005	0.000	0.00105 J			
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ua/L	NA	0.00130	0.00107 U	0.00120 0	0.00114 U		
Perfluoropentanesulfonic Acid (PFPeS)	µg/L	NA	0.0106	0.013	0.000224 U	0.000237 J		
4:2 Fluorotelomersulfonic acid (4:2FTS A)	μg/L	NA	0.000441 U	0.000399 U	0.000413 U	0.000424 U		
6:2 Fluorotelomer sulfonate (6:2 FTS)	µg/L	NA	0.0013 U	0.00118 U	0.00122 U	0.00125 U		
Perfluorodecanesulfonic acid (PFDS)	µg/L	NA	0.000956 U	0.000865 U	0.000895 U	0.00092 U		
Pertluoroundecanoic acid (PFUnA)	µg/L	NA	0.000254 U	0.000229 U	0.000238 U	0.000244 U		
Pertluoroheptanoic acid (PFHpA)	µg/L	NA	0.0326	0.0438	0.00113 J	0.000212 U		
Perfluoronexanesultonic acid (PFHXS)	µg/L		0.0062	0.0332	0.0008 J	0.00129 J		
	µg/L		0.00062 J	0.000791 J		0.000293 U		
Perfluorooctane sulfonate (PEOS)	µg/∟ ug/l		0.00918	0.00930	0.00131 J	0.000039 J		
Perfluorodecanoic Acid (PEDA)	μ <u>α/</u> Γ	NA	0.00296 U	0.00268 U	0.00078 U	0.000475.0		
Sum of Six	ua/L	0.02	0.3392	0.325151	0.00344	0.001929		
Total PEAS	ua/l	NA	0.39297	0.383511	0.008446	0.009046		
Volatile Petroleum Hydrocarbons	<u> </u>	10,1						
C5-C8 Aliphatics	uq/l	300	<100	NS	<100	<100		
C9-C12 Aliphatics	ua/L	700	<100	NS	<100	<100		
C9-C10 Aromatics	µg/L	50,000	<100	NS	<100	<100		
Target Volatile Organic Compounds								
Benzene	μg/L	5	<2	NS	<2	<2		
Benzene Ethylbenzene	μg/L μg/L	5 700	<2 <2	NS NS	<2 <2	<2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether	μg/L μg/L μg/L	5 700 70	<2 <2 <3	NS NS NS	<2 <2 <3	<2 <2 <3		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene	μg/L μg/L μg/L μg/L	5 700 70 140	<2 <2 <3 <4	NS NS NS NS	<2 <2 <3 <4	<2 <2 <3 <4		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene	μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA	<2 <2 <3 <4 <2 <2	NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2	<2 <2 <3 <4 <2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P M-Xylene	μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA	<2 <2 <3 <4 <2 <2 <2 <2 <2	NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2	<2 <2 <3 <4 <2 <2 <2 <2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs)	μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA	<2 <2 <3 <4 <2 <2 <2 <2	NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2	<2 <2 <3 <4 <2 <2 <2 <2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA	<2 <2 <3 <4 <2 <2 <2 <2 <2	NS NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2	<2 <2 <3 <4 <2 <2 <2 <2 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <2 <2	NS NS NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <2 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200 2	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200 2 2 5 5	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200 2 5 5 70 70 70	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200 2 5 70 70 7 5,000	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 200 2 5 70 70 7 5,000 NA	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 70 7 5,000 NA 1,000	<2 <2 <3 <4 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,3-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 70 7 5,000 NA 1,000 70	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 70 7 5,000 NA 1,000 70 10,000	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 70 7 5,000 NA 1,000 70 10,000 100	<2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 70 7 5,000 7 5,000 7 5,000 NA 1,000 70 10,000 100 0.02	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 7 5,000 NA 1,000 70 10,000 100 0.02 600	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 7 5,000 7 5,000 NA 1,000 70 10,000 100 0.02 600 5 5 5	<2 <2 <3 <4 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 7 5,000 NA 1,000 70 10,000 100 0.02 600 5 5 3	<2 <2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2.7-Tetrachloroethane 1,1,2.7-Tetrachloroethane 1,1,2.7-Tetrachloroethane 1,1,2.7-Tetrachloroethane 1,1,2.7-Tetrachloroethane 1,1.2.7-Tichloroethane 1,1.2.7-Tichloroethane 1,1.2.7-Tichloroethane 1,1.2.7-Tichloroethane 1,2.3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2.4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropenpane 1,2-Dichloropenpane 1,3,5-Trimethylbenzene	μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 2 5 70 7 5,000 NA 1,000 70 7 5,000 NA 1,000 70 10,000 100 0.02 600 5 5 5 3 NA	<2 <2 <3 <4 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloroethane, Total 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloroethane, Total 1,3-Dichlorobenzene	μg/L	5 700 70 140 1,000 NA NA NA 5 200 2 5 70 7 5,000 NA 1,000 70 10,000 100 0.02 600 5 5 5 3 NA NA 1,000	<2 <2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1	NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloroethane, Total 1,2-Dichloropropane 1,3-Dichloropenzene 1,3-Dichlorobenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropropane	μg/L	5 700 70 140 1,000 NA NA NA 200 2 5 70 2 5 70 7 5,000 NA 1,000 70 7 5,000 NA 1,000 70 70 10,000 100 0.02 600 5 5 5 5 3 3 NA 100 NA	<2 <2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	NS NS	<2 <2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1 <2 <1 <2 <1 <2 <1 <2	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichlor	μg/L μg/L	5 700 70 140 1,000 NA NA 5 200 2 5 70 70 7 5,000 7 7 5,000 7 7 5,000 70 7 5,000 70 70 70 70 70 70 70 5,000 8 00 5 5 5 5 5 5 5 5 3 3 NA 100 002 600 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	NS NS	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,3-Trichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Trinethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,3-Dichloropenzene 1,3,5-Trimethylbenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene	μg/L μg/L	5 700 70 140 1,000 NA NA NA 200 2 5 70 2 5 70 70 7 5,000 NA 1,000 70 70 70 70 70 70 70 70 70 70 70 70	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	NS NS	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,4-Dic	μg/L μg/L	5 700 70 140 1,000 NA NA NA 5 200 2 5 70 7 5,000 NA 1,000 70 70 10,000 100 0.02 600 5 5 3 NA 1,000 100 0.02 600 5 5 3 NA 1,000 100 0.02 600 5 5 3 NA 1,000 100 0.02 600 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 5 5 3 NA 1,000 100 0.02 600 5 5 5 3 NA 1,000 100 0.02 600 100 0.02 0 100 0.02 0 100 0.02 0 100 0.02 0 100 0 0 0 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	NS	<2 <2 <3 <4 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <2 <0.4 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene o-Xylene P,M-Xylene Volatile Organic Compounds (VOCs) 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2,3-Trichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,4-Dickloropenzene 1,4-Dickloropenzene 1,4-Dickloropenzene 1,4-Dic	μg/L μg/L	5 700 70 140 1,000 NA NA NA 200 2 5 5 70 70 7 5,000 NA 1,000 70 70 5,000 NA 1,000 70 10,000 10,000 100 0.02 600 5 5 5 5 5 5 5 5 3 3 NA 100 NA	<2 <2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <5	NS NS	<2 <2 <3 <4 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <1 <1 <1 <1 <1 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <0.4 <1 <2 <2 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	$ \begin{array}{c} <2 \\ <2 \\ <3 \\ <4 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2 \\ <2$		

Table 2 - Groundwater Analytical Results Sand Pit Road, Truro MA

Sample Designation	N	IW-1	MW-2	MW-3				
Sample Date			2/15/2023	3/15/2023	2/15/2023	2/15/2023		
Depth to Water (ft)			73.34	73.13	52.35	28		
Total Well Depth (ft)			82.0	82.0	60.64	36.35		
Groundwater Standards		MCP RCGW-1	Sample Results					
VOCs-Continued								
4-Methyl-2-pentanone (MIBK)	µg/L	350	<5	NS	<5	<5		
Acetone	µg/L	6,300	<5	NS	<5	3		
Benzene Bromobenzene	µg/L	5	<0.5	NS NS	<0.5	<0.5		
Bromochloromethane	µg/L	NA	<2	NS	<2	<2		
Bromodichloromethane	µg/L	3	<1	NS	<1	<1		
Bromoform	µg/L	4	<2	NS	<2	<2		
Bromomethane	µg/L	7	<2	NS NS	<2	<2		
Carbon Tetrachloride	ug/L	1,000	<1	NS	<1	<1		
Chlorobenzene	µg/L	100	<1	NS	<1	<1		
Chlorodibromomethane	μg/L	2	<1	NS	<1	<1		
Chloroethane	µg/L	1,000	<2	NS	<2	<2		
Chloroform	µg/L	50	<1	NS	0	<1		
Chioromethane	µg/L	1,000	<2	NS	<2	<2		
cis-1,3-Dichloropropene	ua/L	0.4	<0.4	NS	<0.4	<0.4		
Dibromomethane	μ <u>g</u> /L	5,000	<2	NS	<2	<2		
Dichlorodifluoromethane	µg/L	10,000	<2	NS	<2	<2		
Diethyl Ether	µg/L	1,000	<2	NS	<2	<2		
Diisopropyl Ether	µg/L	1,000	<2	NS	<2	<2		
Hexachlorobutadiene	µg/L	700	<1	NS	<1			
Isopropylbenzene	µg/L	10,000	<2	NS	<2	<2		
m+p Xylene	µg/L	NA	<2	NS	<2	<2		
Methyl tert Butyl Ether	µg/L	70	<2	NS	<2	<2		
Methylene Chloride	µg/L	5	<2	NS	<2	<2		
Naphthalene	µg/L	140 NA	<2	NS NS	<2	<2		
n-Propylbenzene	ua/L	1.000	<2	NS	<2	<2		
o-Chlorotoluene	µg/L	1,000	<2	NS	<2	<2		
o-Xylene	µg/L	NA	<1	NS	<1	<1		
p-Chlorotoluene	µg/L	NA	<2	NS	<2	<2		
p-Isopropyltoluene	µg/L	1,000	<2	NS NS	<2	<2		
Styrene	ug/L	100	<1	NS	<1	<1		
tert-Butylbenzene	μ <u>g</u> /L	1,000	<2	NS	<2	<2		
tert-Amyl Methyl Ether (TAME)	µg/L	NA	<2	NS	<2	<2		
tert-Butyl Ethyl Ether (TBEE)	µg/L	NA	<2	NS	<2	<2		
I etrachloroethylene	µg/L	5	<1	NS	<1	<1		
Toluene	μ <u>μ</u> μμ/L	1 000	< <u> <</u>	NS	<1	<1		
trans-1,2-Dichloroethylene	µg/L	80	<1	NS	<1	<1		
trans-1,3-Dichloropropene	μg/L	0.5	<0.4	NS	<0.4	<0.4		
Trichloroethylene	µg/L	5	<1	NS	<1	<1		
Trichlorofluoromethane	µg/L	10,000	<2	NS	<2	<2		
Vilgi Chiolide Xylenes Total	µg/∟ ug/l	∠ 3.000	<1	NS	<1	<1		
Dissolved Metals		0,000				<u> </u>		
Antimony	µg/L	6	<4	NS	<4	<4		
Arsenic	µg/L	10	<5	NS	<5	<5		
Barium	µg/L	2,000	45	NS	13	<10		
Beryllium	µg/L	4	<0.5	NS	<0.5	<0.5		
Chromium	µg/L	4 100	< <u>4</u> <10	INO N.S	<4 <10	< <u>4</u> <10		
Lead	µg/∟ µa/L	10	<10	NS	<10	<10		
Mercury	μg/L	2	<0.2	NS	<0.2	<0.2		
Nickel	µg/L	100	<25	NS	<25	<25		
Selenium	µg/L	50	<10	NS	<10	<10		
Silver	µg/L	7	</td <td>NS NG</td> <td><!--</td--><td><!--</td--></td></td>	NS NG	</td <td><!--</td--></td>	</td		
Vanadium	μ <u>μ</u> μμ/μ μα/Ι	<u>∠</u> 30	<10	NS	<10	< <u> </u>		
Zinc	μ <u>g</u> /L	900	<50	NS	<50	<50		

Table 2 - Groundwater Analytical Results Sand Pit Road, Truro MA

Sample Designation	N	/IVV-1	MW-2	MW-3		
Sample Date			2/15/2023	3/15/2023	2/15/2023	2/15/2023
Depth to Water (ft)		73.34	73.13	52.35	28	
Total Well Depth (ft)			82.0	82.0	60.64	36.35
Groundwater Standards	Sample Results					
Extractable Petroleum Hydrocarbons						
C9-C18 Aliphatics	µg/L	700	<100	NS	<100	<100
C19-C36 Aliphatics	µg/L	14,000	<100	NS	<100	<100
C11-C22 Aromatics	µg/L	200	<100	NS	<100	<100
Polycyclic Aromatic Hydrocarbons						
2-Methylnaphthalene	µg/L	10	<0.4	NS	<0.4	<0.4
Acenaphthene	µg/L	20	<0.4	NS	<0.4	<0.4
Naphthalene	µg/L	140	<0.4	NS	<0.4	<0.4
Phenanthrene	µg/L	40	<0.4	NS	<0.4	<0.4
Acenaphthylene	µg/L	30	<0.4	NS	<0.4	<0.4
Anthracene	µg/L	30	<0.4	NS	<0.4	<0.4
Benzo(a)anthracene	µg/L	1	<0.4	NS	<0.4	<0.4
Benzo(a)pyrene	µg/L	0.2	<0.2	NS	<0.2	<0.2
Benzo(b)fluoranthene	µg/L	1	<0.4	NS	<0.4	<0.4
Benzo(g,h,i)perylene	µg/L	20	<0.4	NS	<0.4	<0.4
Benzo(k)fluoranthene	µg/L	1	<0.4	NS	<0.4	<0.4
Chrysene	µg/L	2	<0.4	NS	<0.4	<0.4
Dibenzo(a,h)Anthracene	µg/L	0.5	<0.4	NS	<0.4	<0.4
Fluoranthene	µg/L	90	<0.4	NS	<0.4	<0.4
Fluorene	µg/L	30	<0.4	NS	<0.4	< 0.4
Indeno(1,2,3-cd)Pyrene	µg/L	0.5	<0.4	NS	<0.4	<0.4
Pyrene	µg/L	20	<0.4	NS	<0.4	<0.4

Notes:

1. μ g//L = micrograms per liter.

2. Bold indicates concentration exceeds applicable Method 1 Standard.

3. Bold and underlined concentrations were Not Detected but reporting limits exceed Method 1 standard

4. MCP = Massachusetts Contingency Plan

5. RCGW-1 = The Reportable Concentration for category GW-1 groundwater as documented in the 2019 MCP

6. < = Not detected by the laboratory above the reporting limit. Laboratory reporting limit shown.

7. U = Not detected by the laboratory above the method detection limit. Laboratory method detection limit shown.

8. J = Concentration is an estimated value between the laboratory method detection limit and reporting limit.

9. ND = Not Detected

10. NA = Not Applicable.

11. NS = Not Sampled.

12. Sum of six includes estimated values and does not include non-detects (U or <). SUM of Six PFAS includes *PFUnA*, PFHpA, PFHxS, PFNA, PFOA, PFOS AND PFDA.

13. Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Page 6 of 6

APPENDIX A

SUBJECT PROPERTY PHOTOGRAPHS

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 1: Vehicle storage area.

Photo 2: Utility pole area.

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 3: Mulch/yard waste processing area.

Photo 4: Mulch pile.

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 5: General sandpit area.

Photo 6: General wooded area.

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 7: Barrels used as obstacles for horses.

Photo 8: General sandpit area.

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 9: General sandpit area.

Photo 10: Typical fisherman equipment storage area.

Photo Log – 2 Sandpit Road and 9 Noons Drive

Photo 11: Typical fisherman equipment storage area.

Photo 12: Pump house for former dust control/equipment rinsing well.

<u>Photo Log – Sand Pit Test Pits, Truro</u> Test Pit

#1: Located near asphalt piles.

Test Pit #2: Located near asphalt piles and lobster traps.

Test Pit #3: Located near trailers.

Test Pit #4: Located near trailers.

Test Pit #5: Located on western edge of property along treeline.

Test Pit #6: Located on northern portion of property, near wooden poles.

Test Pit #7: Located on northeastern portion of property, near shell pile.

Test Pit #8: Located on western portion of property, near Noons Drive.

Test Pit Grave

Test Pit #9: Located on southern portion of property, near sand piles.
Test Pit #10: Located in the eastern portion of the property, adjacent to access road.

Test Pit #11: Located on southeastern portion of property, on plateau near Noons Drive.

APPENDIX B

SUPPORTING DOCUMENTS

- Town of Truro Assessor's Records
- Deed Information
- Settlement and Land Use Agreement
- User Questionnaire
- Resume of Environmental Professional

	Key:	123	84						Тс	own of ⁻	TRURC) - F	Fisca	l Year 202	3				9/	1/2022	6:23 pm	SEQ	#: 1,222
[-	CURRE	NT OWNER			P/	RCEL ID			L	OCAT	ION		CLASS	CLASS%			DESCRIPTION		BN ID	BN	CARD
L F	NOONS DO	ONALD V	V ESTATE	OF				39-107-0			2 S	AND .F	PIT RD		4100	100	SAN	ID/GR/	AVEL			1	1 of 2
G A L	PO BOX 23 NO TRURC	3), MA 020	652-0023			N N N	TRANS IOONS DONAL IOONS DONAL IOONS JOHN I	FER HIST(D W ESTA D W F (HEIR OF	DRY TE OF JOA	DOS 02/08/200 06/13/197 04/20/190	T S 79 99 79 99 05 99	ALE F	PRICE	BK-PG (Cert) 279-034+ 279-034+ 279-034+	PMT NO 06-SS16 05-SS21 87-178	PMT 01/01/ 12/31/ 10/21/	DT 2007 2005 1987	TY 50 S 50 S 3 F	DESC PLIT SUB PLIT SUB EPAIR/REMOD	AMOUNT 5,000	INSP 12/31/198	BY	1st % 100 100 100 100 100 100 100 100
Ĭ	CD T	AC/SF	/UN	Nbhd	Infl1 Ir	nfl2 A	ADJ BASE S	AF In	fl3	Lpi V(C CRE	DIT AI	МТ	ADJ VALUE	Ī								
L A N D	103 S 303 A	-	33,750 R 37.955 R	T6 1.00 1 T6 1.00 1	1.00 1 1.00 1	1.00	270,000 11,475	1.00 80 1.00 50	0.80 C01 0.50 C01	0.90 0.90				209,240 435,530									
ł	TOTAL	38.73	0 Acres	ZONI	NG GR6	FRN	IT 0			ASSESSE	ED CL	JRRE	NT	PREVIOUS									
	Nbhd Infl1 Infl2	ROUTI NO AD NO AD	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N O T E						LAND BUILDING DETACHE OTHER	G ED	64 7 17	4,800 4,400 2,100 1,000	586,000 67,100 2,100 154,500	_			(B)	6 (A)	16			
ľ	TY		COND		YR I	INITS		RONIE	PHO	TO 11/03/2	2011	09	2,300	003,700	÷				K BAS CRL				
D E T A C H E D	SHM G SHM A	1.18 A- 1.00 A	· 0.70 { 0.75 {	<u>BIM/NOTE</u> 3X12 3X10	<u>YB</u>	96 80	18.10 15.34	RUNLL 1,	200 900									31	31				
BU	BUILDING MODEL STYLE QUALITY FRAME	CD 5 20 L 1	ADJ (1.95 (0.83 L 1.00 V	DE CIM DFFICE BUILE OW COST [10 VOOD FRAME	SC DING [100%] 20%] E [100%]	MEAS LIST REVI	SURE 11/3 11/3 EW 11/10	/2011 D /2011 D /2010 D	F JOHN F	G COMMENTS	s 2												
	YEAR BLT		1980 S	IZE ADJ	1.750	E	LEMENT	CD	DESCRI	IPTION	ADJ	SE	BAT	T DESCF	RIPTION	UNITS	;	YB	ADJ PRICE	RCN	TOTAL F	RCN	151,923
D I N G	NET AREA \$NLA(RCN C/ STORIES % HEATEE % A/C % SPRINK	APACITY D LERS	496 D \$306 O	UNITS UNITS 1 1 100 100 0	1.852 1.000 ADJ 1.00 1.00 1.00 1.00	FOUNDA EXTERIC ROOF ST ROOF CC FLOORIN INT FINIS H.V.A.C. FUEL SO COMPLE	NTION DR WALL TRUCTURE OVER NG SH DURCE X	3 0 1 1 1 4 3 1 2 1 5 3 1 0	CONTIN WA WOOD SHIN GABLE ASPH/COMF WW/ CARPE DRYWALL ELECTRIC ELECTRIC	NLL NGLES P SHIN ET	1.00 1.00 1.00 1.00 1.02 0.98 1.00 1.00	A C A B B V	CRL 1 BAS I VDK 1	N CRAWL SPAC	E		496 496 186	1980	15.50 264.67 69.67	7,68 131,27 12,95	EFF.YF COND FUNC ECON	VAGE 51 5 0	1990 / 31 1 %
																					RCNLD	51	<u>% G</u> [

	Key:	1234								Town	of T	RUR	0 -	Fisc	al `	Year 2023	3				g	/1/2022	6:23 pm	SEQ	#: 1,22	3
		CURRE	NT OWNER				PARCI	EL ID					LOCA	TION			CLASS	CLAS	S%		DESCRIPTIO	N	BN ID	BN	CARD	
L F	NOONS DO	NALD W ESTAT	E OF				39-1	07-0				2 :	SAND	PIT RD)		4100	10	0 SA	ND/GR/	VEL			2	2 of 2	
G	PO BOX 23	MA 02652 0023			- H	TR	ANSFER	HISTO	DRY	E	DOS	T :	SALE	PRICE		BK-PG (Cert)	PMT NO	P	MT DT	TY	DESC	AMOUNT	INSP	BY	1st	%
A	NO IRURO,	WA 02052-0025																								
L																										
Ī	CD T	AC/SF/UN	Nbhd	Infl1	Infl2	ADJ BASE	SAF	Inf	fl3	Lpi	VC	CRI	EDIT A	AMT		ADJ VALUE										
L																										
А																										
N																										
Ļ																										
ŀ	TOTAL		ZON	ING	FRN	NT				AS	SESSE	D C	URRE	INT		PREVIOUS										
	Nbhd		N							LAN			1.	71 000												
	Infl1		Т							DE	TACHE	D	1	71,000												
	Infl2		E							ОТІ	HER										6()				
Ļ			<u> </u>						_	TO	TAL															
H	TY QU	AL COND	DIM/NOTE	YB	UNITS	ADJ PRIC	CE F	RCNLD)	PHOTO 1	11/03/20	011								(A) BAS						
																1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
E											-	A Transie	The Party Name	Conception of the local division of the loca	143	Sec. 1										
T										The set	the 1					Contractor of the local division of			50				50	'I		
C												-		1 Martin		CT.										
H											1															
E										The state				1							10					
											- Manual	and the second			100	CIC - A					(B) ¹⁰					
										Contraction of		- Internet								20	10 BAS 10	10 30	1			
											The state	and the second	Contraction of the second											_		
										Constant of the		Contraction of	and the second			Contraction of the										
L										BI DG COM	MENTS				- Contraction											
	BUILDING	CD ADJ	DE	SC		SURE	11/3/201	1 D	F	PLEASANT	VIEW A		DY													
	MODEL	5			ILIST		11/3/201	1 59	т																	
в	QUALITY	L 0.83	LOW COST [1]	CAGE [97 %] 00%]			11/0/201																			
υ	FRAME	4 1.00	METAL FRAM	E [100%]	REV	IEW 1	1/10/201		F																	
![YEAR BLT	1985 5	SIZE ADJ	0.915	E	ELEMENT		CD	DE	SCRIPTION	1	ADJ	S	BAT	Т	DESCRI	PTION	U	NITS	YB	ADJ PRICE	RCN	TOTAL	RCN	38	8,685
D	NET AREA	3,000 E	ETAIL ADJ	1.734	FOUNDA	ATION		2 8	SLAB			1.00	A	BAS	L	BASE AREA			2,900	1985	129.56	375,72	9 CON	DITION E	LEM	CD
1	\$NLA(RCN)	\$130	VERALL	1.000	EXTERIO		_	19 F	PRE-F	AB METAL		1.01	B	BAS	L	BASE AREA			100	1985	129.56	12,95	6			
G	CAF	PACITY	UNITS	ADJ	ROOF C	OVER	·	10	METAL	-		0.98														
-	STORIES		1	1.00	FLOORI	NG		9 0	CONCI	RETE		0.95														
	% HEATED		100	1.00	H.V.A.C	ън		6 M 1 F	VIINIMI FORCE	UM ED AIR		0.95														
	% SPRINKL	ERS	0	1.00	FUEL SC	DURCE		2	GAS	• • • •		1.00														
					COMPLE	ΞX		0				1.00											EFF Y	R/AGE	1985 / 3	6
																							COND	56 5	6 %	
																							FUNC	0		
																							ECON	0		
																							DEPR	56	6 GD	44
																							RCNLD		\$17	1,000

	Key:	1	235									Том	vn of	TRU	RO -	Fisc	al \	Year 2023	3			ç	9/1/2022	6:23 pm	SEQ #	#: 1,22	24
	-		CURR	ENT OWNE	R				PARC	CEL ID					LOC	ATION			CLASS (CLASS%		DESCRIPTIO	N	BN ID	BN	CARE)
	NOONS	DONAL	LD W ESTA	TE OF					39-	108-0					9 NO	ONS DR			1300	100 D	EV LAN	DC				l of 1	
G	PO BOX	23		•			— H	TF	RANSFE	R HIST	FORY		DOS	T	SALI	E PRICE	E	3K-PG (Cert)	PMT NO	PMT DT	TY	DESC	AMOUNT	INSP	BY	1st	%
A	NUTRU	RO, MA	4 02652-002	3				NOONS DO	NALD \	W EST	ATE OF		02/08/20	07 99			10	0833-307+									
L							!'	NOONS DO	JNALD	vv			07/02/19					0000-007									
ľ	CD		C/SE/UN	Nbbd	Infl1	In	fl2	AD.I BASE	SAF		nfl3			/C. (CREDIT	AMT											
. 1	100		0.775	11 1.00	1 1.0	00 L2	0.75	410.94	4 1.00	0 1	1.00	V6	1.75		OREDIT	7 4011		318.480									
A	300 A	4	16.425	11 1.00	1 1.0	00 1	1.00	41,82	5 0.5	5 1	1.00	V6	1.75					379,070									
Ν	400 F	-	300	11 1.00	1 1.0	00 1	1.00	40	1.00	0 1	1.00	V6	1.75					120,750									
D																											
ľ	TOTAL	17	7 200 Acres	Z	ONING	RES	FR	NT	313	1		Ir	1		CUR												
ſ		<u> </u>		N	FY05=D	ECR AC	CRG AC	GAIN PER 2	2003 PLA	AN. FY	10				CURP	818 300		706.300									
	Nbhd	NC	ORTH TRUE	^{RO} 0	ADDED	LOC AD	OJ (ABL	JTS SAND/	GRVL P	IT)+VV	V	E	BUILDIN	G		010,500		00,000									
	Infl1	NC) ADJ	T	+CHGD	REMAI	NING F	RNTG+ MC	OVED LT	T3 ADJ	TO		DETACH	IED		0		0									
	Infl2	LO	DC ADJ	E	+DELET	500. FY1 FD1G	1=VWI TRACT	AD.I PER	IANT PA FIFLD R	ANORA 2EV	AMIC)		OTHER	-		0		0									
					ADDITIC	ONAL 64	19' FRO	NTAGE AT	END O		NS		TOTAL			818,300		706,300									
ŀ	TY	QUAL		DIM/NO	TE Y	BU	NITS	ADJ PRI	CE	RCNL	D	РНОТО															
Ы																											
E																											
т																											
A																											
н																											
E																											
D																											
L	I		-							1		BLDG CC	OMMENT	rs													
ł	BUILDI	NG C	CD ADJ		DESC		MEA	ASURE																			
	STYLE						LIST	т																			
в	QUALIT	((15)4(
υĮ	FRAME						REV	VIEW																			
![YEAR B	LT		SIZE ADJ				ELEMENT		CD	D	ESCRIPTI	ION	ADJ	s	BAT	Т	DESCRI	PTION	UNITS	YB	ADJ PRICE	RCN	TOTAL F	RCN		
	NET AR	EA		DETAIL ADJ																1				CONI	DITION E	EM	CD
ī	\$NLA(R	CN)		OVERALL																							
N																											
G			5111	UNITS		,																					
																								EFF.YR	R/AGE		
																								COND			
																								FUNC			
																								ECON			
																								DEPR		GD	
																								KUNLD			

Bk:10833-307 37140

07-02-1997 @ 01:46

NOT FIDUCIARY DEFDOT

A N A N FLEET NATIONAL_FBANK, a banking corporation established under the laws of the United States of America and having_Fan_yaddress of 75 State Street, Boston, Massachusetts 02109, as it is Executor of the Will of John F. Noons, Barnstable Probate and Family Court Docket Number 58216, pursuant to the power of sale contained in said will and as it is Trustee under a certain trust agreement dated November 21, 1978, recorded in Barnstable Deeds, Book 9722, Page 320 establishing The John F_F Noons Trust Agreement, pursuant to the powers set forth or contained therein, and every other power hereto enabling, C O P Y

in consideration of ONE (\$1.00) DOLLAR paid,

grants to

s:∮^{-*}

DONALD W. NOONS of Post Office Box 23, North Truro, Massachusetts 02652

The following parcels of land, together with improvements thereon, if any, in Truro, Barnstable County, Massachusetts:

I. Land containing 19.591 acres, more or less, as shown on a plan entitled in part: "Consolidation of Plan of Land in Truro made for the Estate of John F. Noons" dated Aug., 1981 prepared by Slade Associates, Inc. and recorded in Barnstable County Registry of Deeds Plan Book 360, Page 15.

Excluded from the foregoing premises is a parcel consisting of .806 acres, more or less, and being shown as LOT 1 on a plan entitled in part: "Division Plan of Land in Truro made for Donald W. Noons" dated May, 1993 prepared by Slade Associates, Inc. and recorded in Barnstable County Registry of Deeds Plan Book 499, Page 51, said excluded portion having been previously conveyed by deed recorded in Book 8941, Page 236.

For Grantor's title to Parcel I see deed recorded in Barnstable County Registry of Deeds Book 1051, Page 488 of which the above described premises are a portion. See also decree of the Barnstable Probate and Family Court in case number 96E 0031 CG-1.

II. LOT 6 containing 26,042 square feet, more or less, being shown on a plan entitled in part: "Subdivision Plan of Land in North Truro made for John F. Noons" dated September, 1970 prepared by W.G. Slade, Surveyor and filed in the Barnstable Registry of Deeds in Plan Tube 169.

For Grantor's title to Parcel II see deed recorded with Barnstable County Registry of Deeds Book 1263, Page 205 of which the above described premises are a portion.

III. LOT 7 containing 27,229 square feet, more or less, being shown on a plan entitled in part:

C:\DATA\WPDOCS\29950DD.WPD Page 1

"Subdivision Plan of Land in North Truro made for John R. Noons" dated September, 1970 prepared by W.G. Slade, Surveyor and filed in the Barnstable Registry of Deeds in Plan Tube 169.

OFFICIAL

For Grantor's title to Parcel III see deed recorded with Barnstable County Registry of Deeds Book 1263, Page 205 of which the above described premises are a portion.

OFFICIAL

With respect to all parcels see also the above referenced probate docket number 58216. See also Barnstable Registry District document number 454,307, Shawmut Bank of Cape Cod, N. A. becomes Shawmut Bank of Southeastern Massachusetts, N. A.; document number 485,068, Shawmut Bank of Southeastern Massachusetts, N. A. becomes Shawmut Bank, N. A.; document number 658,460. Shawmut Bank, N. A, becomes Fleet National Bank of Massachusetts; and document number 663,200, Fleet National Bank of Massachusetts becomes Fleet National Bank.

IN WITNESS WHEREOF, the said Fleet National Bank, Trustee and Executor as aforesaid, has caused its corporate seal to be hereto affixed and these presents to be signed, acknowledged and delivered in its name and behalf by GEOFFREY V. REULAND, its Vice President, hereunto 19± day of June, 1997. duly authorized this

> FLEET NATIONAL BANK. Trustee and Executor as aforesaid

euland, Vice President

COMMONWEALTH OF MASSACHUSETTS

Barnstable, ss.

June 19.1997

Then personally appeared the above named Geoffrey V. Reuland, Vice President, and acknowledged the foregoing instrument to be the free act and deed of Fleet National Bank, as trustee and executor as aforesaid, before me,

Sum Libert Notary Public

My Commission Expires: A

C:\DATA\WPDOCS\29950DD.WPD

Page 2

BARNSTABLE REGISTRY OF DEEDS

Know all men by these presents,

That I Antone Lucas of Juna in the County of Banelable and Commonwealth of Marco ethicelds NOT

 $\mathbf{34}$

IN CONSIDERATION OF CO.E Enderente And Sigly U.E.F. I & 16A J.

the receipt whereood is hereby acknowledged, do hereby give grant, bargain, sell, and convey unto the said to a grining house a sell of a grining the sell and for the said for the sell of the sell o Averia land Southe gelt Chy Br E. the 15 mg kund tord thirde (22 Es) Endle Cil & f. D. Easterly Mility 157 32) rode there South Byphundred truty one and our daid (1213) dod It the land of the Estate of John Smith hence welterly by land of said Smithis Estate Eighty four (84) rode to land of me E. to Avery thence not michael & Rich, Theat Swamp branen Said Avery, John Lo Rich, nichard A rich about one typuched Frich and and Eight 108 Purcle to hojukion: Metuce by said thompsoniland simuly and one and of Inter S 6170-7) ro-de to the starting point and contrining Sigty five base more Unwrigh said land to the land Trich and recerring aleg the Same rights may as fulle by Jeen Saine and conveyed by hie administrator wamp landerry Co. a road, through the adjoining land not They thirty (Sa) feet mide at hing the same plennice convend to me Donulate Corrunty Deethe book 216 page 203

TO HAVE AND TO HOLD the granted promises with all the privileges and appurtenances thereto belonging to the said.

Administrators shall WARRANT AND DEFEND the same to the said grantee and <u>hit</u>. Heirs and Assigns forever against the lawful claims and demands of all persons. And for the consideration aforesaid

Sungle IN WITNESS WHEREOF

have hereunto set. 2415 hand and seal this CIVERELE day of April Signed, Sealed, and Delivered, in presence of

Antone Lucae (LS)

COMMONWEALTH OF MASSACHUSETTS Farmetabless April 20 th 1005. Then personally appeared the above-named Allotic Kuccie and acknowledged the foregoing instrument to be A.C. free act and deed; before me, William 76 Jan Justice of the PRACE BARNSTABLE, SS. Received Hull 20 190 6, and is recorded and 22 CAMELOT J. CMC MARDIN REGISTER. ATTEST.

SETTPEMENT AND LAND USE AGREEMENT

AN AN OFFICIAL

This Settlement and Land Use Agreement is made between Y on the one hand, Paula Noons, as Executrix of the Estate of Donald Noons, and John F. Noons, Inc. (together, "Noons), and, on the other hand, John A. Shope, Frank Korahais, Gwyndollyn Korahais, Beth Dietz, Christine Markowski, Leslia Gerber, Frederick M. Misilio, Ja (ns trustee of the Noons Drive Realty Trust), Veronika Betinstein, David Bernstein, Nicholas Paraglis, and Banafsheh Moradi (together, "the Abutters"). O P Y C O P Y

WHEREAS, the Estate of Donald Noons is the owner of record of property known as 9 Noons Drive and listed as Parcel 39-108 on the tax rolls of the Truro assessor, as well as adjoining property known as 2 Sandpit Road listed as Parcel 39-107 on the same tax rolls (Parcels 39-107 and 39-108 shall be referred to herein as the "Noons Parcels");

WHEREAS, John F. Noons, Inc., contends that it has operated a sand and gravel operation dating back to the 1950s on Parcels 39-107 and 39-108;

WHEREAS, the Abutters are the owners and/or the occupants of properties that immediately abut Parcel 39-108 (and are not far from Parcel 39-107) and that have addresses of 32 Noons Drive, 30 Noons Drive, 29 Noons Drive, 28 Noons Drive, 25 Noons Drive, 23 Noons Drive, and 21 Noons Drive (all of said properties shall be referred to herein as the "Abutters Parcels");

WHEREAS, the Noons Parcels and the Abutters Parcels affected by this agreement are listed more particularly by reference to deeds on Exhibit A hereto.

WHEREAS, most of the Abutters have complained to the Building Inspector of the Town of Truro about the excavation of sand by John F. Noons, Inc. on Parcel 39-108, and have complained to Noons about the use of Parcels 39-107 and 39-108 for target shooting;

WHEREAS, Noons reports that it has taken preventative action regarding the target shooting, including following through with notice to the Truro Police Department;

WHEREAS, by letter dated August 16, 2012, the Building Inspector issued an order to Noons to cease and desist from the excavation of sand/soil on Parcel 39-108, and to restore the property to its pre-excavation condition;

WHEREAS, Noons has appealed the order of the Building Inspector, and the Abutters have opposed the appeal; and

WHEREAS, Noons and the Abutters seek amicably to resolve the issues concerning the use of Parcels 39-107 and 39-108 for target shooting and the excavation of Parcel 39-108, reserving their rights as to all other land use or other issues that may arise or have arisen between them.

1

NOW, THEREFORE, the parties agree as follows: $N \circ T$ A N A N

ΑN

1. The Abutters shall withdraw their complaint to the Building Inspector with respect to the excavation of Parcel 39-f089 except that the Abutters shall not be dremed to have waived any legal rights in the event that the obligations of Noons do not become effective under paragraph 3 below. N \circ T N \circ T

A N

2. So long as Noëns shall centain in compliance with this Agreement, the Abutters shall not object to the issuance of a permit to excavate sand, during week plays (other than Massachusetts or federal holidays) only, in the portion of Parcel 39-108 designated for new excavation on the map attached hereto as Exhibit B, so long as said permit shall require as a condition compliance with the obligations in paragraph 5 below.

3. Provided the Building Commissioner withdraws his Cease and Desist Order, dated August 16, 2012, and further issues a permit for sand and gravel excavation consistent with the proposed continued new excavation, as shown on Exhibit B attached hereto, excavation (other than as may be permitted for building, road construction, leveling and filling pursuant to a validly issued permit(s) and / or approval(s)) shall be prohibited on all land in between Noons Drive and Somerset Heights Road, the location of which roads is denoted on deeds recorded at the Barnstable Registry of Deeds at, respectively, Plan Book 241, Page 41, and Plan Book 299, Page 54. For certainty, other than as set forth above, the parties reserve their rights as to any excavation on Parcel 39-108, except that Noons agrees that it shall not undertake or permit any excavation except pursuant to a permit issued by the Town of Truro.

4. Noons and their successors, heirs, and assigns shall not use or permit the use of Parcels 39-107 or 39-108 for target shooting or other discharge of firearms. Upon the execution of this agreement by all parties, Noons shall confirm to the Truro Town Police by letter in the form attached hereto as Exhibit C that shooting on Parcels 39-107 and 39-108 is prohibited and that any persons who may hereafter discharge firearms on the property will be trespassing.

5. The Estate of Donald Noons and John F. Noons, Inc. shall be jointly and severally responsible to complete the measures set forth on Exhibits D and E, attached hereto, in order to screen Parcel 39-108 from view from 32 Noons Drive, to permit access to 32 Noons Drive and to partially mitigate the disruption of the natural landscape resulting from the excavation that has already taken place, as more specifically provided for in Exhibit D, the Work Narrative.

6. Noons' obligations under paragraphs 3 and 5 shall be in full force and effect only as long as Noons uses any portion of Parcel 39-108 for a sand and gravel operation. In the event that the owner of record of Parcel 39-108 forever abandons, both for itself and its successors, heirs, and assigns, the sand and gravel operation on parcel 39-108 and records a notice to that effect, then the obligations of Noons under this agreement, as set forth in paragraphs 3 and 5, shall cease to exist and be of no further force and effect. The parties agree that the recorded notice shall have the effect of permanently discontinuing and abandoning the sand and gravel operation on Parcel 39-108, irrespective of how many years have passed, notwithstanding any language in the Truro Zoning or General By-Law to the contrary. Further, the parties agree that irrespective of whether any such notice is filed, Noons shall be obligated to complete all of the work listed on Exhibit D, the Work Narrative, and that the berm to be constructed the worder, in order to screen Parcel 39-108 from the view of 32 Noon Drive, shall remain in place and Nts plantings may be maintained by John A. Shope or Fis Successor's (and trimmed by the Abulters per Aheterms of Exhibit D) until such time as a redevelopment plan for Parcel 39-108 chas been filed and received all requisite approvals from the Town of Truro and the Cape Cod Commission, to the extent ΝΟΤ ΝΟΤ applicable.

ΑN ΑN The rights, gestrictions and responsibilities pursuant to this agreement are intended to run 7. with the land in perpetuicy or as long as may be permitted under Massachusetts law. Without limiting the foregoing, (a) the rights, benefits, liabilities, agreements and obligations set forth in Paragraphs 1 and 2 shall bind the Abutters and all parties claiming by, through or under the Abutters, and are for the benefit of the Noons Parcels and may be enforced by the Noons and all parties claiming by, through or under the Noons, and (b) the rights, benefits, restrictions, liabilities, agreements and obligations set forth in Paragraphs 3, 4 and 5 shall burden the Noons Parcels and shall bind Noons and all parties claiming by, through or under Noons, and are for the benefit of the Abutters Parcels and may be enforced by the Abutters and all parties claiming by, through or under the Abutters. This Agreement and extensions pursuant to M.G.L. c. 184, § 27 may be recorded by any party at the Barnstable Registry of Deeds.

This agreement shall take effect upon the execution by the last of the Estate of Donald 8. Noons, John F. Noons, Inc., and John A. Shope, irrespective of execution by any other party, but no other party may claim any rights hereunder unless it shall have executed the agreement by May 6, 2013.

This agreement may be executed in counterparts that, taken together, shall constitute a 9. single agreement.

WHEREUNTO the parties have subscribed their signatures below.

ESTATE OF DONALD NOONS

<u>Youlu Moons, Executrip</u> By: Paula Noons, Executrix

JOHN F. NOONS, INC. N O T ΝΟΤ ΑN Bathe Tree F FICIAL Linda Noons Rose, FresidentY

N OTHE Commonwealth of Massachosetts A N ΑN OFFLCIAL May 6, 2013 Claupay Noons and Barnstable, os. FFICIAL On this day, personally appeared the above-named <u>hinda Noons Rose</u>, proved to me by satisfactory evidence of identification, being (check whichever applies):
driver's license or other state or federal governmental document bearing a photographic image, \Box oath or affirmation of a credible witness known to me who knows the above signatory, or my own personal knowledge of the identity of the signatory, to be the person whose name is signed above, and acknowledged the foregoing instrument to be his/her free act and deed for the purposes stated therein.

SANDRA VALENTINE-BOOM Notary Public Commonwealth of Massachusetts My Commission Expires My commission expires: March 7, 2019 The Commonwealth of Massachusetts

april 22, 2013

On this day, personally appeared the above-named <u>John a Shopp</u>, proved to me by satisfactory evidence of identification, being (check whichever applies): driver's license or other state or federal governmental document bearing a photographic image,
a oath or affirmation of a credible witness known to me who knows the above signatory, or thin own personal knowledge of the identity of the signatory, to be the person whose name is signed above, and acknowledged the foregoing instrument to be his/her free act and deed for the purposes stated therein.

<u>Al: NA Kose McGoldrick</u> (Print Name of Notary Public):

My commission expires: 10/26/18

ΝΟΤ A N A N Frank Korahais OFFICIAL OFFICIAL o Υe СОРҮ С Ø Gwyndolyn ΝΟΤ ΑN Ľ FFICIAL 0 СОРҮ Beth Dietz ouch

Christine Markowski

Leslie Gerber

Frederick M. Misilio, Jr., as trustee of the Noons Drive Realty Trust

Veronika Bernstein

David Bernstein

Nicholas Paradis

			ľ	A A	С : N	Г					1	A A	с. И	Г		
Frank Korahais	_s 0	F	F C	I O	C P	I Y	A	L	0	F	F C	I O	C P	I Y	A	L
			11	1_(2.5	Ľ					1	1 (с :	Г		
Gwydolyn Kor	aha	is	11	A A	<u>с</u> N	<u>[</u>		an a	•		1	A A	С. И	Г		

Beth Dietz

.

Christine Markowski erber Leslie Gerber

Frederick M. Misilio, Jr., as trustee of the Noons Drive Realty Trust

Veronika Bernstein

David Bernstein

Nicholas Paradis

	N O T	NOT
Frank Korahais	A N	A N
	OFFICIAL	OFFICIAL
	СОРҮ	СОРҮ
Gwyndolyn H. k	Corahais N O T	NOT
	A N	A N
	OFFICIAL	ΟΓΓΙΟΙΑΙ
	СОРҮ	. СОРУ
Beth Dietz		

Christine Markowski

× 1.

Leslie Gerber Trustee h Frederick M. Misilo, Jr., as trustee of the Noons Drive Realty Trust

Veronika Bernstein

David Bernstein

Nicholas Paradis

		Ν	ΟТ	1					1	1 (כ	Г		
Frank Korahais		A	N				_			А	Ν			
Tank Koranais	ΟF	ΕI	С	I	A	L	0	F	F	Ι	С	Ι	А	\mathbf{L}
		СС	P	Y					С	0	Ρ	Y		
Gwyndolyn H. I	Korah	aisN	ΟΤ	1					1	1 (Г		
0		A	N							А	Ν			
	ΟF	ΕI	С	I.	A	L	0	F	F	Ι	С	Ι	А	L
		СС	P	Y			_		С	0	Ρ	Y		
Beth Dietz														

Christine Markowski

· · · · · ·

.

ł

+

Leslie Gerber

Frederick M. Misilo, Jr., as trustee of the Noons Drive/Realty Trust Veronika Bernstein

David Bernstein

Nicholas Paradis

ΝΟΤ ΝΟΤ A N ΑN Frank Korahais OFFICIAL OFFICIAL СОРҮ СОРҮ Gwyndolyn H. Korahais N O T ΝΟΤ A N ΑN OFFICIAL OFFICIAL СОРҮ СОРҮ

Beth Dietz

٠.

Christine Markowski

Leslie Gerber

Frederick M. Misilo, Jr., as trustee of the Noons Drive Realty Trust

Veronika Bernstein

David Bernstein 1 Rer Nicholas Paradis

Banafsheh Moradi

Bk 27647 Pg34 #49707

> ΝΟΤ ΝΟΤ **Exhibit** A ΑN ΑN OFFICIAL OFFICIAL Noons Parcels СОРҮ СОРҮ Parcel 39-107, 2 Sandpit Road, see Barnstable Book 279, Page 34. ΑN ΑN Parcel 39-108, 99Noofis Drive, see Barnstable Book 10833, Rage 307. СОРҮ СОРҮ Abutters Parcels

32 Noons Drive, see Barnstable Book 24303, Page 202.

30 Noons Drive, see Barnstable Book 1941, Page 157.

29 Noons Drive, see Barnstable Book 25491, Page 30.

28 Noons Drive, see Barnstable Book 1461, Page 736.

25 Noons Drive, see Barnstable Book 12656, Page 191.

23 Noons Drive, see Barnstable Book 24234, Page 24.

21 Noons Drive, see Barnstable Book 23657, Page 292.

ΝΟΤ ΝΟΤ Exhibit C ΑN ΑN ° F F [Lefterhead of John F. Neons, Phys.] A L

ΝΟΤ ΝΟΤ Chief Kyle Takakjian A N ΑN Truro Police Department CIAL OFFICIAL СОРҮ СОРҮ 344 Route 6 Truro, MA 02666

Re: Shooting in Sand Pit

Dear Chief Takakjian:

••••

. .

'n

This will confirm that John F. Noons, Inc. and the Estate of Donald Noons do not permit target shooting or other discharge of firearms in the premises and property at 2 Sandpit Road and 9 Noons Drive, which are popularly known as "the sand pit." Please have your force treat any persons who may be discharging firearms in the sand pit as trespassing.

Thank you for your attention to this matter.

Sincerely,

Linda Noons Rose President

John A. Shope cc:

NOT AN OFFICIA COPY Exhibit D'NOT AN AN AN COPY

• *

.....

The work to be done is by reference to the pole lines and stakes as shown on the sketch plans attached as Exhibit E. $N \circ T$ $N \circ T$ A N $A \circ N$

Pole #1 sits by the arive way of or near the boundary line for B2CNdor's Drive (as depicted at Plan Book 241, Page 41, without reference to the derelict fee statute) Pass shown on the attached sketch plan. Pole #2 sits within 3 to four feet of the boundary line for 32 Noons Drive at the end of Noons Drive running north, northwesterly. Starting with pole #1, the pole line runs in a north, northwesterly direction, measured in 20' sections with the last section being fifteen feet (15') (all measurements are more or less) for a total distance of approximately one hundred fifty five feet (155'). Noons does not hereby waive any right to seek to relocate or remove Pole #2, there being no effect of such relocation on Noons' obligations hereunder.

At pole #1, the trees are grown and dense and the machinery needed to perform the work (as set forth below) is a minimum of ten feet (10') wide. Therefore it will be necessary to clear some trees from this area in order to bring in the necessary machinery for the work (including any widening of the road). In order to accomplish the work, Noons will be required to cut or trim trees growing along the pole line in order to permit access for the work to be performed pursuant to this agreement. Linda Noons Rose and John Shope have together marked with orange paint the trees to be removed.

Noons shall begin the leveling of the road approximately twenty feet (20') from pole #1, and end at pole #2.

Currently the approximate measurement at the highest point of the grade to level is about six feet (6') from the beginning point.

For purposes of reference, approximately eighty feet (80') from pole #1 there is currently a rim buried in the banking as well as a small pile of rubble at the bottom of the bank - this is the highest point of the grade to level. Noons shall remove this rim and any other debris in connection with the work.

Noons shall grade to soften any cuts created by the creation or regrading of the road.

The material removed will be used to help fill the banking.

Noons shall mulch and terrace the cut edge to promote growth and for aesthetic reasons, unless John A. Shope shall determine that it is not necessary.

Noons shall fill in the area of banking along the projected path of the driveway, which is the first eighty feet (80').

All material used for any of the work pursuant to this agreement shall be clean fill, which the parties agree shall be free of debris or contaminants. A N

OFFICIAL OFFICIAL Appropriate fill will be used working from both the top over the Pedge and from the bottom.

In order to provide access MorOlaffger vehicles as well as a buffer, appropriate fill shall be used to create a passage/base on Norons Drive of thirty feet (30') parallel to the pole line for a distance of approximately 80' from pole #C. From that point to Porte #2, the width of the passage may, at the election of Noons, neck down to the existing width due to the lapek of need of access to the corner of the 32 Noons Drive lot.

A standard finished banking grade of 1.5 to 2 to 1 shall be established along this area. That is, the bank shall run horizontally from 1.5' to 2' for each 1' that it rises. However, at the election of Noons, the banking grade may be made softer.

As a protected means, a low berm or small boulders shall be added to the edge as well (or poles) to create a berm of a few feet. The banking shall descend gradually after pole #2.

The banking area running 80' from the work to pole # 2 in a north, northwesterly direction will be leveled but otherwise left in its present condition because Noons is unable to fill from the top without crossing property lines and avoiding wires. (There is previously processed material presently stockpiled at the edge of the bank.)

Noons will fill some from the bottom and/or pull down and re-grade or terrace this section as it becomes accessible.

The Berm

Noons shall create a berm of material for the purpose of a visual buffer and to provide a planting medium.

The area of the berm will be twenty feet (20') in on the northeast side of the road, beginning at a point as shown on the attached sketch plan. The berm will peak at about eight feet (8') and gradually slope to cover an area of approximately fifteen feet (15') running north, northwesterly by Noons Drive and running approximately fifty feet (50') easterly by Somerset Heights Road.

Noons shall cover the side of the berm facing Somerset Heights Road with a mulching material. Noons shall plant on the berm two (2) rows of Leyland Cypress trees on the in a staggered fashion. One row shall be at the base of berm next to the existing pine trees and the other row shall be on the south side of the term. The berm may be terraced if necessary to accommodate the planting of the trees.

The remaining banking behind the berm will be filled to make a 1.5 to 2 to 1 slope, except that a softer grade is permissible at the election of Noons.

The berm shall have soil sNitable to sustain Leyland Cypress trees, and in particular, shall have a base layer of loam of at least one foot (1') and a surface layer of Noam of at least one foot (1'). OFFICIAL OFFICIAL No fewer than twenty-four (24) Lyland Cypress trees having an initial height of approximately three feet (3') (but no less than 2'8") shall be planted on the berm. NOT NOT

· *

ي ال عر

Noons shall also plant no fewer than seven (7) Leyland Cypressures having an initial height of approximately three feet (3') (but nodess than 2'8") at the intersection of Somerset Heights Road and Noons Drive. The area shall be filled in a couple of feet on dygraded down not too close to the road to provide an appropriate planting medium for the trees to root well. Linda Noons Rose and John Shope have staked the locations of these seven (7) trees. In this area the planting could get an earlier start with the trees planted before the berm is built.

Noons estimates that the filling and berm creation will require approximately 1600 cubic yards of material, but Noons' obligations hereunder shall not be affected if that estimate is incorrect.

Noons shall not be responsible for watering or tending the trees, but, for itself and its successors, the Estate of Donald Noons hereby grants to John A. Shope and his successors in title at 32 Noons Drive an easement of access for the limited purpose of watering and tending the trees to be planted pursuant to this agreement. In addition, for itself and its successors, the Estate of Donald Noons hereby grants to the Abutters and their successors in title the right to trim the Leland Cypress trees to be planted pursuant to this agreement but only to the extent necessary to preserve unobstructed views of Cape Cod Bay from their currently existing residences. Shope and the Abutters hereby agree to indemnify and hold harmless Noons against any personal injury, damage or claim arising out of the limited rights granted hereunder. Further, the easement of access and trimming rights granted hereunder, shall be in full force and effect only until the owner of record of Parcel 39-108 shall file a notice, pursuant to paragraph 6 of the Settlement and Land Use Agreement, that said owner has permanently abandoned, for itself and its successors and assigns, any sand and gravel operation on Parcel 39-108 and a redevelopment plan for Parcel 39-108 has been filed and received all requisite approvals from the Town of Truro and the Cape Cod Commission. Noons agrees to take care not to damage hoses or any other property used to water or tend the trees and shall indemnify John A. Shope in the event that it does so.

Irrespective of the date on which the building inspector may withdraw his complaint or issue a new permit to excavate, the planting of the seven (7) Leyland Cypress trees at the intersection of Somerset Heights Road and Noons Drive shall be completed by June 15, 2013. The creation of the berm shall be completed by May 31, 2013, except for ten feet or less on the eastern edge. The planting of the trees on the berm shall be completed by June 30, 2013, except for trees on the eastern edge noted above. The remainder of the berm and planting of remaining trees thereon shall be completed by October 1, 2013. The remaining grading and filling shall be completed no later than December 31, 2013.

All work to be performed pursuant to this agreement shall be performed on weekdays only (state and federal holidays excepted), without prior approval of Shope, which shall not be unreasonably withheld.

11

AREA TO BE EXCAVANED UNDER PERMIT

Stakes have been placed $\frac{1}{2}0$ ¹apart for a distance of appFoxFinately 300A running 15" or less from the tree line along the road known as Somerset Heights Road OinFa north, northeasterly direction. This line is located from Somerset Heights Road in distances varying from 40' to 120' as approximately shown on the attached sketch plan. At the end the line turns (in a curve) north, northeasterly for approximately 120' and then northwesterly to the edge of the already excavated area all as approximately shown on the attached sketch plan. I C I A L

C O P Y C O P Y Upon the completion of excavation, the banking along this line shall be graded to a 1.5 to 2 to 1 grade and some areas such as the circular area (shown on the plan) shall be filled in completely and graded the same ratio, except that at the election of Noons the grade may be softer.

The adjacent areas that have previously been worked in years past will also be regraded so as to create a groomed landscape. The tree line along Somerset Heights Road will not be affected.

For certainty, this agreement does not address any rights of excavation as to Parcel 39-107, as to which the parties reserve their rights.

NOT **Exhibit E'** NOT AN AN

[Copies of Exhibit E are on file with the parties and the Building Inspector for the Town of Truro] COPY

		ľ	1 () [Г					ľ	10) [С		
			А	Ν							А	Ν			
0	F	F	Ι	С	Ι	А	Г	0	F	F	Ι	С	Ι	А	L
		С	0	Ρ.	Y					С	0	Ρ	Y		

B4112054.9

BARNSTABLE REGISTRY OF DEEDS

ASTM E1527-21 USER QUESTIONNAIRE

Name:	Title:
Company: <u>Town of Truro</u>	Date: 2023

Relationship to Site: <u>The Town of Truro is considering purchasing 2 Sand Pit Road and 9 Noons Way.</u>

Are you aware of any AULs, such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or have been filed or recorded in a registry?

□Yes √No

If yes describe:

Do you have any other knowledge or experience with the property that may be pertinent to the environmental professional?

Yes
No

If yes describe:

Are you aware of any environmental cleanup liens against the property that are filed or recorded under federal, tribal, state or local law?

Yes
No

If yes describe:

ASTM E1527-21 USER QUESTIONNAIRE

As the user of this ESA do you have any specialized knowledge or experience related the property or nearby properties?
☐Yes ☑No
Does the purchase price being paid for this property reasonably reflect the fair marke value of the property? If not, have you considered whether the price difference is due contamination?
Yes No Additional Information
Appraisal is under contract, we expect deliverables in four weeks
Do you know the past uses of the property?
The property has historically been used for landscape supply, lobster trap winter storage,
brush dump for landscapers, and storage for Noons construction company.
Do you know of specific chemicals that are present or once were present at the property?

ASTM E1527-21 USER QUESTIONNAIRE

Do you know of spills or other chemical releases that have taken place at the property?
□Yes ☑No
If yes describe:
Do you know of any environmental cleanups that have taken place at the property?
□Yes ☑No
If yes describe:
As the user of the ESA, based on your knowledge and experience related to the property are there any indicators that point to the presence or likely presence of contamination a the property?
Monitoring well number one shows PFAS above acceptable limts, and it has been determined
that the source is upgradient.

Bryan Massa, LSP

Senior Scientist bmassa@horsleywitten.com

Areas of Expertise

Environmental Due Diligence Environmental Site Assessment and Remediation Design and Oversight

Professional Registrations

Massachusetts Licensed Site Professional 40-Hour OSHA

Academic Background

Bachelors of Science, Environmental Engineering, Wentworth Institute of Technology

Professional Experience

Horsley Witten Group, Inc., Senior Scientist and LSP, August 2018 to Present

Lightship Engineering, Senior Project Manager, July 2013 to August 2018

META Environmental, Project Manager January 2009 to June 2013

Vertex Engineering, Project Manager, June 2005 to December 2008

Battelle, Environmental Laboratory Technician and Hazardous Waste Coordinator, June 2000 to June 2005

Bryan Massa is a Senior Environmental Professional and LSP with over 23 years of experience in the environmental field. Bryan has worked on a variety of environmental projects throughout the United States and Mexico. His experience has included remediation design and oversight, risk assessments, landfill construction oversight and monitoring, emergency response to releases, soil gas and indoor air assessment, LSP services, Phase I and Phase II Environmental Site Assessments for due diligence purposes, forensic evaluation of analytical data and environmental chemistry. His portfolio includes a number of interdisciplinary projects that combine remediation efforts with civil site design, stream restoration, and adaptive reuse.

KEY PROJECTS

Assessment and Remediation of PFAS in Soil and Groundwater, Cape Cod Gateway Airport, Hyannis, MA

Bryan is the LSP of record for a release of PFAS to soil and groundwater relating to the historic usage of aqueous fire-fighting foams (AFFF) at the Airport. Tasks have included the delineation of soil and groundwater impacts, surface water testing, forensic evaluation of groundwater data to identify comingled PFAS plumes and the design and installation of a non-permeable cap on approximately 2-acres of PFAS impacted soils. Mr. Massa is currently developing a comprehensive remedial strategy for the site.

Assessment and Remediation of PFAS and Aviation Gas in Soil and Groundwater, Provincetown, MA

Bryan is the LSP of record for a release of aviation gas and PFAS to soil and groundwater relating to an aircraft accident and subsequent usage of AFFF for firefighting purposes. Tasks have included the delineation of soil and groundwater impacts, groundwater extraction and disposal, soil excavation and disposal, and hydraulic conductivity testing. Investigation of the extent of the release is ongoing.

Former Manufactured Gas Plant, Greenfield, MA

Bryan conducted a comprehensive subsurface investigation to determine the nature and extent of coal tar related impacts in soil, groundwater and river sediment at a former Manufactured Gas Plant. The data collected was used to design a barrier wall to prevent the migration of coal tar into the river and to develop a sediment remedial action and river restoration plan. Bryan subsequently observed the installation of an approximate 620-foot barrier wall with a passive groundwater management system, the excavation of thousands of tons of sediment, community air monitoring and the re-stabilization of the adjacent riverbanks. Bryan oversaw the remediation on a daily basis over a period of approximately nine months and completed numerous field studies including indoor air/sub-slab vapor assessments, groundwater sampling and NAPL recovery.

South Main Street Former Manufactured Gas Plant, Canandaigua, NY

Bryan conducted a comprehensive subsurface investigation of river sediment and soil within and adjacent to Sucker Brook as part of response actions at an adjacent former Manufactured Gas Plant. Investigation activities included the collection of soil, groundwater, and sediment. Mr. Massa subsequently observed the remediation which included the diversion of a stream, excavation of thousands of tons of sediment and land side soil, injection of remedial additives, sheet-pile installation and vibration/crack monitoring, community air monitoring and the re-stabilization of the adjacent riverbanks. Mr. Massa oversaw the remediation on a daily basis over a period of approximately ten months.

Clark Street Former Manufactured Gas Plant, Canandaigua, NY

Bryan conducted a comprehensive subsurface investigation of soil and groundwater within the parking lot of a strip plaza that was formerly a manufactured gas plant. The investigation also included a comprehensive screening of sub-slab vapors and indoor air within the strip plaza building to determine if vapor intrusion existed. Mr. Massa subsequently observed the remedial action that included the installation of sheet pile, excavation of thousands of tons of soil under a movable sprung structure, and the re-stabilization of the parking lot. Mr. Massa also conducted vibration/crack monitoring and community air monitoring. Mr. Massa oversaw the remediation on a daily basis over a period of approximately six months.

Former Mill Building, Gardner, MA

Bryan conducted an ASTM Phase I Environmental Site Assessment on a former mill building that had been used for the manufacturing of furniture. The former mill building had been abandoned since the mid 1980's and a private developer was interested in converting the former mill building into residential apartments. Bryan identified several recognized environmental conditions ("RECs") at the site. A subsequent Phase II Subsurface Investigation identified a release of petroleum related compounds ("PRCs") from an upgradient source had impacted the site as well as chlorinated solvents relating to the historic use as a furniture manufacturer. Soil, groundwater and soil gas was impacted by the release. A sub-slab depressurization system was subsequently designed and installed at the Site during construction. A Method 3 Risk Assessment determined that a level of No Significant Risk exists at the site.

Former Mill Building, Haverhill, MA

Bryan conducted an ASTM Phase I Environmental Site Assessment of a former mill building that had been used for the manufacturing of circuit boards. The former mill building had been abandoned since the mid 1990's and a private developer was interested in converting the former mill building into residential apartments. Bryan identified several RECs at the site. A subsequent Phase II Subsurface Investigation identified a release of petroleum related compounds, an abandoned in place petroleum underground storage tank, and soil gas impacted with chlorinated solvents.

Former Commercial Vehicle Painter, Braintree, MA

Bryan conducted an ASTM Phase I Environmental Site Assessment on a commercial vehicle painter that had been in operation since the 1970's and identified several RECs at the Site. A subsequent Phase II Subsurface Investigation identified a release of select metals and PAHs in soil relating to the historic use of the site. A Method 3 Risk Assessment determined that a level of No Significant Risk exists at the site.

Emergency Responses to Aircraft Accidents, Commercial Vehicles, and Recreational Boats, MA.

Bryan has provided LSP services for release of oil and/or hazardous materials in excess of the Massachusetts Department of Environmental Protection (MassDEP) Reportable Quantity. These services included MassDEP regulatory reporting, release assessment and remediation oversight.

APPENDIX C

ENVIRONMENTAL DATA RESOURCES, INC REPORT

- The EDR Radius Map[™] Report with GeoCheck[®]
- Certified Sanborn[®] Map Report
- The EDR Aerial Photo Decade Package
- EDR Historical Topographical Map Report with QuadMatch[™]
- The EDR-City Directory Image Report

Sand Pit Road

2 Sand Pit Rd North Truro, MA 02652

Inquiry Number: 7228749.1s January 19, 2023

The EDR Radius Map[™] Report with GeoCheck[®]

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-LBC-BCS

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	42
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-11
Physical Setting Source Map Findings	A-13
Physical Setting Source Records Searched	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527-21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

2 SAND PIT RD NORTH TRURO, MA 02652

COORDINATES

Latitude (North):	42.0234930 - 42 1' 24.57"
Longitude (West):	70.0797270 - 70 4' 47.01"
Universal Tranverse Mercator:	Zone 19
UTM X (Meters):	410609.4
UTM Y (Meters):	4652735.0
Elevation:	46 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: Version Date: 11721272 NORTH TRURO, MA 2018

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: Source: 20140718 USDA

Target Property Address: 2 SAND PIT RD NORTH TRURO, MA 02652

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
A1	TOW BOAT US	352 RTE 6	HW GEN	Higher	596, 0.113, East
A2	TOW BOAT US PROVINCE	352 RTE 6	RCRA-VSQG	Higher	596, 0.113, East
A3	ROADWAY - VEHICLE AC	IN FRONT 350 RT 6	SHWS, RELEASE	Higher	628, 0.119, East
4	PROVINCETOWN WATER	JCT RTES 6 AND 6A	RCRA NonGen / NLR	Higher	1043, 0.198, ENE
5	WATTS SERVICE CTR/S	372 ROUTE 6	SEMS-ARCHIVE, LUST, RELEASE	Higher	1424, 0.270, NNE
6	NORTH TRURO POST OFF	34 SHORE RD	LAST, RELEASE	Lower	2363, 0.448, North
7	S HIGHLAND RD LANDFI	HIGHLAND RD	SHWS, INST CONTROL, RELEASE	Higher	2548, 0.483, ENE
8	WTP SO. HOLLOW WELLF	11 SOUTH HOLLOW RD	SHWS, RELEASE	Lower	2852, 0.540, NE
9	NO LOCATION AID	LONG NOOK RD	SHWS, RELEASE	Lower	3197, 0.605, North
10	FORMER AIR BASE	32 OLD DEWLINE RD	SHWS, LUST, RELEASE	Higher	4528, 0.858, NE
11	NO LOCATION AID	1 PERRY RD	SHWS, LAST, RELEASE	Higher	4684, 0.887, SSE
12	CITGO GAS STATION	435 ROUTE 6	SHWS, RELEASE	Higher	5261, 0.996, NNW
TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	Federal Superfund Liens

Lists of Federal Delisted NPL sites

Delisted NPL_____ National Priority List Deletions

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY______ Federal Facility Site Information listing SEMS______ Superfund Enterprise Management System

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS_____ Corrective Action Report

Lists of Federal RCRA TSD facilities

RCRA-TSDF_____ RCRA - Treatment, Storage and Disposal

Lists of Federal RCRA generators

RCRA-LQG	RCRA - Large	Quantity	Generators
RCRA-SQG	RCRA - Small	Quantity	Generators

Federal institutional controls / engineering controls registries

LUCIS_____ Land Use Control Information System US ENG CONTROLS_____ Engineering Controls Sites List US INST CONTROLS_____ Institutional Controls Sites List

Federal ERNS list

ERNS..... Emergency Response Notification System

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF..... Solid Waste Facility Database/Transfer Stations

Lists of state and tribal leaking storage tanks

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

Lists of state and tribal registered storage tanks

FEMA UST	Underground Storage Tank Listing
UST	Summary Listing of all the Tanks Registered in the State of Massachusetts
AST	Aboveground Storage Tank Database
INDIAN UST	Underground Storage Tanks on Indian Land

Lists of state and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

Lists of state and tribal brownfield sites

BROWNFIELDS..... Completed Brownfields Covenants Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS_____ A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI	Report on the Status of Open Dumps on Indian Lands
DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations
ODI	Open Dump Inventory
IHS OPEN DUMPS	Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS	Liens Information Listing
LIENS 2	CERCLA Lien Information

Records of Emergency Release Reports

HMIRS	Hazardous Materials Information Reporting System
RELEASE	Reportable Releases Database
SPILLS	Historical Spill List
SPILLS 90	SPILLS 90 data from FirstSearch
SPILLS 80	SPILLS 80 data from FirstSearch

Other Ascertainable Records

FUDS	Formerly Used Defense Sites
DOD	Department of Defense Sites
SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing
US FIN ASSUR	Financial Assurance Information
EPA WATCH LIST	EPA WATCH LIST
2020 COR ACTION	2020 Corrective Action Program List
TSCA	Toxic Substances Control Act
TRIS	Toxic Chemical Release Inventory System
SSTS	Section 7 Tracking Systems
ROD	Records Of Decision
RMP	Risk Management Plans
RAATS	RCRA Administrative Action Tracking System
PRP	Potentially Responsible Parties
PADS	PCB Activity Database System
ICIS	Integrated Compliance Information System
FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide
	Act)/TSCA (Toxic Substances Control Act)
MLTS	Material Licensing Tracking System
COAL ASH DOE	Steam-Electric Plant Operation Data
COAL ASH EPA	Coal Combustion Residues Surface Impoundments List
PCB TRANSFORMER	PCB Transformer Registration Database
RADINFO	Radiation Information Database
HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing
DOT OPS	Incident and Accident Data
CONSENT	Superfund (CERCLA) Consent Decrees
INDIAN RESERV	Indian Reservations
FUSRAP	Formerly Utilized Sites Remedial Action Program
UMTRA	Uranium Mill Tailings Sites
LEAD SMELTERS	Lead Smelter Sites
USAIRS	Aerometric Information Retrieval System Facility Subsystem
US MINES	Mines Master Index File
ABANDONED MINES	Abandoned Mines
FINDS	Facility Index System/Facility Registry System
ECHO	Enforcement & Compliance History Information
UXO	Unexploded Ordnance Sites
DOCKET HWC	Hazardous Waste Compliance Docket Listing
FUELS PROGRAM	EPA Fuels Program Registered Listing
PFAS NPL	Superfund Sites with PEAS Detections Information
PFAS FEDERAL SITES	Federal Sites PFAS Information
PFAS TSCA	PFAS Manufacture and Imports Information
PFAS RCRA MANIFEST	PEAS Transfers Identified In the RCRA Database Listing
PFAS ATSDR	PFAS Contamination Site Location Listing
PFAS WQP	Ambient Environmental Sampling for PFAS
PFAS NPDES	Clean Water Act Discharge Monitoring Information
PFAS ECHO	Facilities in Industries that May Be Handling PFAS Listing
PFAS ECHO FIRE TRAINING	Facilities in Industries that May Be Handling PEAS Listing
PFAS PART 139 AIRPORT	All Certified Part 139 Airports PFAS Information Listing
AQUEOUS FOAM NRC	Aqueous Foam Related Incidents Listing
PFAS	PFAS Contaminated Sites Listing
AIRS	Permitted Facilities Listing
ASBESTOS	ASBESTOS
DRYCLEANERS	Regulated Drycleaning Facilities

ENF	Enforcement Action Cases
Financial Assurance	Financial Assurance Information Listing
GWDP	Ground Water Discharge Permits
MERCURY	Mercury Product Recyling Drop-Off Locations Listing
NPDES	NPDES Permit Listing
TIER 2	Tier 2 Information Listing
TSD	TSD Facility
UIC	Underground Injection Control Listing
MINES MRDS	Mineral Resources Data System

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
EDR Hist Auto	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS______ Recovered Government Archive State Hazardous Waste Facilities List RGA LUST______ Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed

data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for

listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site.

A review of the SEMS-ARCHIVE list, as provided by EDR, and dated 10/27/2022 has revealed that there is 1 SEMS-ARCHIVE site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WATTS SERVICE CTR/S Site ID: 0100505 EPA Id: MAD044806594	372 ROUTE 6	NNE 1/4 - 1/2 (0.270 mi.)	5	16

Lists of Federal RCRA generators

RCRA-VSQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-VSQG list, as provided by EDR, and dated 11/21/2022 has revealed that there is 1 RCRA-VSQG site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
TOW BOAT US PROVINCE	352 RTE 6	E 0 - 1/8 (0.113 mi.)	A2	8
EPA ID:: MAR000552703				

Lists of state- and tribal hazardous waste facilities

SHWS: Contains information on releases of oil and hazardous materials that have been reported to DEP.

A review of the SHWS list, as provided by EDR, and dated 07/22/2022 has revealed that there are 7 SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
ROADWAY - VEHICLE AC Release Tracking Number: 4-0020912 Current Status: RAO	IN FRONT 350 RT 6	E 0 - 1/8 (0.119 mi.)	A3	11
S HIGHLAND RD LANDFI Release Tracking Number: 4-0000897 Current Status: RAO	HIGHLAND RD	ENE 1/4 - 1/2 (0.483 mi.)	7	23
FORMER AIR BASE Release Tracking Number: 4-0019586 Current Status: RAO	32 OLD DEWLINE RD	NE 1/2 - 1 (0.858 mi.)	10	30
NO LOCATION AID Release Tracking Number: 4-0010336	1 PERRY RD	SSE 1/2 - 1 (0.887 mi.)	11	34

Current Status: RAO				
CITGO GAS STATION Release Tracking Number: 4-0028779 Current Status: PSNC	435 ROUTE 6	NNW 1/2 - 1 (0.996 mi.)	12	39
Lower Elevation	Address	Direction / Distance	Map ID	Page
WTP SO. HOLLOW WELLF Release Tracking Number: 4-0018962 Current Status: RAO	11 SOUTH HOLLOW RD	NE 1/2 - 1 (0.540 mi.)	8	27
NO LOCATION AID Release Tracking Number: 4-0012923 Current Status: RAO	LONG NOOK RD	N 1/2 - 1 (0.605 mi.)	9	29

Lists of state and tribal leaking storage tanks

LUST: Sites within the Releases Database that have a UST listed as its source.

A review of the LUST list, as provided by EDR, and dated 07/22/2022 has revealed that there is 1 LUST site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
WATTS SERVICE CTR/S	372 ROUTE 6	NNE 1/4 - 1/2 (0.270 mi.)	5	16	
Release Tracking Number /	Current Status: 4-0000170 / RAO				

LAST: The Leaking Aboveground Storage Tanks database

A review of the LAST list, as provided by EDR, and dated 07/22/2022 has revealed that there is 1 LAST site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page	
NORTH TRURO POST OFF	34 SHORE RD	N 1/4 - 1/2 (0.448 mi.)	6	18	
Release Tracking Number / Curre	nt Status: 4-0011029 / RAO				

State and tribal institutional control / engineering control registries

INST CONTROL: Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

A review of the INST CONTROL list, as provided by EDR, and dated 07/22/2022 has revealed that there is 1 INST CONTROL site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
S HIGHLAND RD LANDFI Release Tracking Number: 4-0000897	HIGHLAND RD	ENE 1/4 - 1/2 (0.483 mi.)	7	23	

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

RCRA NonGen / NLR: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA NonGen / NLR list, as provided by EDR, and dated 11/21/2022 has revealed that there is 1 RCRA NonGen / NLR site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
PROVINCETOWN WATER EPA ID:: MAD981061682	JCT RTES 6 AND 6A	ENE 1/8 - 1/4 (0.198 mi.)	4	13	

HW GEN: Permanent generator identification numbers for all Massachusetts generators of hazardous waste and waste oil that have registered with or notified MassDEP of their hazardous waste activities.

A review of the HW GEN list, as provided by EDR, and dated 09/15/2022 has revealed that there is 1 HW GEN site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
TOW BOAT US	352 RTE 6	E 0 - 1/8 (0.113 mi.)	A1	8
State Generator Status: VQG-MA				
EPA Id: MAR000552703				

Due to poor or inadequate address information, the following sites were not mapped. Count: 2 records.

Site Name

AIR ROUTE SURVEILLANCE RADAR SITE NO LOCATION AID

Database(s)

SHWS, RELEASE SHWS, RELEASE

OVERVIEW MAP - 7228749.1S

SITE NAME: Sand Pit Road	CLIENT: Horsley Witten Group, Inc.
ADDRESS: 2 Sand Pit Rd	CONTACT: Caroline Armstrong
North Truro MA 02652	INQUIRY #: 7228749.1s
LAT/LONG: 42.023493 / 70.079727	DATE: January 19, 2023 10:31 am
	Copyright © 2023 EDR, Inc. © 2015 TomTom Rel. 2015.

DETAIL MAP - 7228749.1S

ADDRESS:

LAT/LONG:

2 Sand Pit Rd

North Truro MA 02652

42.023493 / 70.079727

INCULEY # 7228749 1S	DATE:	January 19, 2023 10:32 a	m
	INQUIRY	#: 7228749.1s	

Caroline Armstrong

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Lists of Federal NPL (S	uperfund) site	s						
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Lists of Federal Delisted	d NPL sites							
Delisted NPL	1.000		0	0	0	0	NR	0
Lists of Federal sites su CERCLA removals and	ıbject to CERCLA orde	ers						
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of Federal CERCL	A sites with N	FRAP						
SEMS-ARCHIVE	0.500		0	0	1	NR	NR	1
Lists of Federal RCRA f undergoing Corrective	acilities Action							
CORRACTS	1.000		0	0	0	0	NR	0
Lists of Federal RCRA	TSD facilities							
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA g	generators							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.250 0.250 0.250		0 0 1	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 1
Federal institutional con engineering controls re	ntrols / gistries							
LUCIS US ENG CONTROLS US INST CONTROLS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
Lists of state- and tribal hazardous waste faciliti	l ies							
SHWS	1.000		1	0	1	5	NR	7
Lists of state and tribal and solid waste dispose	landfills al facilities							
SWF/LF	0.500		0	0	0	NR	NR	0
Lists of state and tribal	leaking stora	ge tanks						
LUST	0.500		0	0	1	NR	NR	1

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
LAST INDIAN LUST	0.500 0.500		0 0	0 0	1 0	NR NR	NR NR	1 0
Lists of state and tribal	registered sto	orage tanks						
FEMA UST UST AST INDIAN UST	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal instituti control / engineering co	ional ontrol registrie	25						
INST CONTROL	0.500		0	0	1	NR	NR	1
Lists of state and tribal	voluntary clea	anup sites						
INDIAN VCP	0.500		0	0	0	NR	NR	0
Lists of state and tribal	brownfield sit	tes						
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONME	NTAL RECORD	<u>s</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / Waste Disposal Sites	Solid							
INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 0 0 0
Local Lists of Hazardou Contaminated Sites	is waste /							
US HIST CDL US CDL	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Local Land Records								
LIENS LIENS 2	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Records of Emergency	Release Repo	orts						
HMIRS RELEASE SPILLS SPILLS 90 SPILLS 80	TP TP TP TP TP		NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0
Other Ascertainable Re	cords							
RCRA NonGen / NLR FUDS	0.250 1.000		0 0	1 0	NR 0	NR 0	NR NR	1 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
DOD	1.000		0	0	0	0	NR	0
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
US FIN ASSUR	TP		NR	NR	NR	NR	NR	0
EPA WATCH LIST	TP		NR	NR	NR	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	0
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	0
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
PFAS NPL	0.250		0	0	NR	NR	NR	0
PFAS FEDERAL SITES	0.250		0	0	NR	NR	NR	0
PFAS TSCA	0.250		0	0	NR	NR	NR	0
PFAS RCRA MANIFEST	0.250		0	0	NR	NR	NR	0
PFAS ATSDR	0.250		0	0	NR	NR	NR	0
PFAS WQP	0.250		0	0	NR	NR	NR	0
PFAS NPDES	0.250		0	0	NR	NR	NR	0
PFAS ECHO	0.250		0	0	NR	NR	NR	0
PFAS ECHO FIRE TRAINI	NG0.250		0	0	NR	NR	NR	0
PFAS PART 139 AIRPORT	Г 0.250		0	0	NR	NR	NR	0
AQUEOUS FOAM NRC	0.250		0	0	NR	NR	NR	0
PFAS	0.250		0	0	NR	NR	NR	0
AIRS	TP		NR	NR	NR	NR	NR	0
ASBESTOS	TP		NR	NR	NR	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
ENF	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
Financial Assurance	TP		NR	NR	NR	NR	NR	0
GWDP	TP		NR	NR	NR	NR	NR	0
HW GEN	0.250		1	0	NR	NR	NR	1
MERCURY	0.500		0	0	0	NR	NR	0
NPDES	TP		NR	NR	NR	NR	NR	0
TIER 2	TP		NR	NR	NR	NR	NR	0
TSD	0.500		0	0	0	NR	NR	0
UIC	TP		NR	NR	NR	NR	NR	0
MINES MRDS	TP		NR	NR	NR	NR	NR	0
EDR HIGH RISK HISTORIC	CAL RECORDS							
EDR Exclusive Record	s							
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		Ō	NR	NR	NR	NR	Ō
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVER	RNMENT ARCHI	VES						
Exclusive Recovered G	Govt. Archives							
RGA HWS	TP		NR	NR	NR	NR	NR	0
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	3	1	5	5	0	14

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Map ID		MAP FINDINGS			
Direction	L				
Distance	Site				EDR ID Number
A1	TOW BOAT US			HW GEN	S123811229
East	352 RTE 6				N/A
< 1/8	TRURO, MA 02666				
0.113 mi. 596 ft.	Site 1 of 3 in cluster A				
Relative:	HW GEN.				
Higher	Name:	TOW BOAT US			
Actual:	Address:	352 RTE 6			
113 ft.	City,State,Zip:	TRURO, MA 02666			
	EPA Id:	MAR000552703			
	State Cenerator Status:				
	State Generator Status.				
A2	TOW BOAT US PROVINCETOWN	/CHATHAM/BASS RIVER		RCRA-VSQG	1025502795
East	352 RTE 6				MAR000552703
< 1/8	TRURO, MA 02666				
0.113 mi.	Site 2 of 2 in cluster A				
596 ft.	Site 2 of 3 in cluster A				
Relative:	RCRA Listings:				
Higher	Date Form Received by Agen		20190326		
Actual:	Handler Name:	TOW BOAT US PROVINC	252 RTE 6	M/BASS RIVER	
π.	Handler City State Zip		TRURO, MA (02666	
	EPA ID:		MAR0005527	03	
	Contact Name:		NOAH SANT	OS	
	Contact Address:		COMMERCIA	L STREET	
	Contact City,State,Zip:		PROVINCET	OWN, MA 02657	
	Contact Telephone:		508-742-7166 Not reported	j	
	Contact Fmail:		TOWBOATSI	ISPROVINCETOWN	GMAIL COM
	Contact Title:		PRESIDENT		50M/ (12:00M)
	EPA Region:		01		
	Land Type:		Private		
	Federal Waste Generator Des	scription:	Conditionally	Exempt Small Quantity	/ Generator
	Non-Notifier: Bioppial Papart Cycla:		Not reported		
	Accessibility:		Not reported		
	Active Site Indicator:		Handler Activi	ities, State-specific Act	ivities
	State District Owner:		MA		
	State District:		SE		
	Mailing Address:		COMMERCIA		
	Owner Name:	ΝΟΔΗ SANTOS	PROVINCE I	JWN, WA 02057	
	Owner Type:		Private		
	Operator Name:	NOAH SANTOS			
	Operator Type:		Private		
	Short-Term Generator Activity	<u>.</u>	No		
	Importer Activity: Mixed Waste Concreter:		NO No		
	Transporter Activity		No		
	Transfer Facility Activity:		No		
	Recycler Activity with Storage	:	No		
	Small Quantity On-Site Burne	r Exemption:	No		
	Smelting Melting and Refining	Furnace Exemption:	No		
	Underground Injection Contro	l:	No		
	Off-Site Waste Receipt:		NO		
	Universal Waste Indicator: Universal Waste Destination F	Facility:	NO		
		~~			

Map ID Direction Distance Elevation Site

MAP FINDINGS

Database(s)

EDR ID Number EPA ID Number

1025502795

TOW BOAT US PROVINCETOWN/CHATHAM/BASS RIVER (Continued)

Federal Universal Waste:	No
Active Site Fed-Reg Treatment Storage and Disposal Facility:	Not reported
Active Site Converter Treatment storage and Disposal Facility:	Not reported
Active Site State-Reg Treatment Storage and Disposal Facility:	Not reported
Active Site State-Reg Handler:	Y
Federal Facility Indicator:	Not reported
Hazardous Secondary Material Indicator:	NN
Sub-Part K Indicator:	Not reported
Commercial TSD Indicator:	No
Treatment Storage and Disposal Type:	Not reported
2018 GPRA Permit Baseline:	Not on the Baseline
2018 GPRA Renewals Baseline:	Not on the Baseline
Permit Renewals Workload Universe:	Not reported
Permit Workload Universe:	Not reported
Permit Progress Universe:	Not reported
Post-Closure Workload Universe:	Not reported
Closure Workload Universe:	Not reported
202 GPRA Corrective Action Baseline:	No
Corrective Action Workload Universe:	No
Subject to Corrective Action Universe:	No
Non-TSDFs Where RCRA CA has Been Imposed Universe:	No
TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe:	No
TSDFs Only Subject to CA under Discretionary Auth Universe:	No
Corrective Action Priority Ranking:	No NCAPS ranking
Environmental Control Indicator:	No
Institutional Control Indicator:	No
Human Exposure Controls Indicator:	N/A
Groundwater Controls Indicator:	N/A
Operating TSDF Universe:	Not reported
Full Enforcement Universe:	Not reported
Significant Non-Complier Universe:	No
Unaddressed Significant Non-Complier Universe:	No
Addressed Significant Non-Complier Universe:	No
Significant Non-Complier With a Compliance Schedule Universe:	No
Financial Assurance Required: Not reported	
Handler Date of Last Change:	20190402
Recognized Trader-Importer:	No
Recognized Trader-Exporter:	No
Importer of Spent Lead Acid Batteries:	No
Exporter of Spent Lead Acid Batteries:	No
Recycler Activity Without Storage:	No
Manifest Broker:	No
Sub-Part P Indicator:	No

Hazardous Waste Summary: Waste Code: D001 Waste Description: IGNITABLE WASTE Waste Code: D018 Waste Description: BENZENE Handler - Owner Operator:

Owner/Operator Indicator:	Owner
Owner/Operator Name: NOAH SANTOS	
Legal Status:	Private

Map ID Direction Distance Elevation Site

MAP FINDINGS

Database(s) EP

EDR ID Number EPA ID Number

TOW BOAT US PROVINCETOWN/CHAT	HAM/BASS RIVE	R (Continued)	1025502795
Date Became Current:		20190326	
Date Ended Current:		Not reported	
Owner/Operator Address:		131A COMMERCIAL STREET	
Owner/Operator City,State,Zip:		PROVINCETOWN, MA 02657	
Owner/Operator Telephone:		508-742-7166	
Owner/Operator Telephone Ext:		Not reported	
Owner/Operator Fax:		Not reported	
Owner/Operator Email:		TOWBOATSUSPROVINCETOWN@GMAIL.COM	
Owner/Operator Indicator:		Operator	
Owner/Operator Name: NOAH SAN	TOS		
Legal Status:		Private	
Date Became Current:		20190326	
Date Ended Current:		Not reported	
Owner/Operator Address:		131A COMMERCIAL STREET	
Owner/Operator City,State,Zip:		PROVINCETOWN, MA 02657	
Owner/Operator Telephone:		508-742-7166	
Owner/Operator Telephone Ext:		Not reported	
Owner/Operator Fax:		Not reported	
Owner/Operator Email:		TOWBOATSUSPROVINCETOWN@GMAIL.COM	
Historic Generators:			
Receive Date:		20190326	
Handler Name: TOW BOAT	US PROVINCETO	DWN/CHATHAM/BASS RIVER	
Federal Waste Generator Description):	Conditionally Exempt Small Quantity Generator	
State District Owner:		MA	
Large Quantity Handler of Universal	Waste:	No	
Recognized Trader Importer:		No	
Recognized Trader Exporter:		No	
Spent Lead Acid Battery Importer:		No	
Spent Lead Acid Battery Exporter:		No	
Current Record:		Yes	
Non Storage Recycler Activity:		No	
Electronic Manifest Broker:		No	
List of NAICS Codes and Descriptions:			
NAICS Code:	336612		
NAICS Description:	BOAT BUILDING		
Eacility Has Reseived Natices of Violati			
Violations:	515.	No Violations Found	
Evaluation Action Summary: Evaluations:		No Evaluations Found	

Database(s)

EDR ID Number EPA ID Number

A3 East < 1/8 0.119 mi. 628 ft.	ROADWAY - VEHICLE ACCIDENT IN FRONT 350 RT 6 TRURO, MA 02666 Site 3 of 3 in cluster A		SHWS RELEASE	S108962912 N/A
Relative: Higher Actual: 117 ft.	SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome:	ROADWAY - VEHICLE ACCIDENT IN FRONT 350 RT 6 TRURO, MA 026660000 4-0020912 VEHICLE TRURO 11/20/2007 TWO HR Not reported RAO 01/31/2008 Not reported A2		
	Release: Name: Address: City,State,Zip: Release Tracking Number/Current Status: Primary ID: Official City: Notification: Category: Status Date: Phase: Response Action Outcome: Oil / Haz Material Type:	ROADWAY - VEHICLE ACCIDENT IN FRONT 350 RT 6 TRURO, MA 026660000 4-0020912 / RAO Not reported TRURO 11/20/2007 TWO HR 01/31/2008 Not reported A2 - A permanent solution has been achieved. been reduced to background. Oil	Contaminatio	n has not
	Click here to access the MA DEP site for th Actions: Action Type: Action Status: Action Date: Response Action Outcome: Action Type: Action Status: Action Date: Response Action Outcome: Action Type: Action Status: Action Date: Response Action Outcome:	his facility: Immediate Response Action Imminent Hazard Evaluation Received 1/31/2008 A permanent solution has been achieved. Con- reduced to background. RNFE Transmittal, Notice, or Notification Received 1/31/2008 A permanent solution has been achieved. Con- reduced to background. Immediate Response Action Completion Statement Received 1/31/2008 A permanent solution has been achieved. Con- reduced to background.	tamination has tamination has	s not been s not been

Response Action Outcome - RAO RAO Statement Received EDR ID Number Database(s) EPA ID Number

ROADWAY - VEHICLE ACCIDENT (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: 1/31/2008
A permanent solution has been achieved. Contamination has not been reduced to background.
RLFA
FLDDO
11/20/2007
A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) FLDISS 11/20/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

Release Disposition Reportable Release under MGL 21E 11/20/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 11/21/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 12/10/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 12/4/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 12/5/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FLDD1U 12/5/2007 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO Level I - Technical Screen Audit 5/14/2008

S108962912

EDR ID Number Database(s) EPA ID Number

	Response Action Outcome:	A permanent solution reduced to backgro	ion has been achieved. Contamination has not been bound.
	Chemicals: Chemical: Quantity: Location Type: Source:	DIESEL FUEL 35 gallons ROADWAY VEHICLE	
	PROVINCETOWN WATER JCT RTES 6 AND 6A TRURO, MA 02652		RCRA NonGen / NLR 1000433238 MAD981061682
	RCRA Listings: Date Form Received by Agency:		19860331
	Handler Name:	PROVINCETOWN WATE	ER
	Handler Address:		JCT RTES 6 AND 6A
	Handler City,State,Zip:		TRURO, MA 02652
	EPA ID:		MAD981061682
	Contact Name:		PAUL DALEY
	Contact Address:		TOWN HALL 260 COMMERCIAL ST
	Contact City,State,Zip:		PROVINCE I OWN, MA 02657
	Contact Telephone:		508-487-1810 Not reported
	Contact Email:		Not reported
	Contact Title:		Not reported
	EPA Region:		01
	Land Type:		Private
	Federal Waste Generator Description	ו:	Not a generator, verified
	Non-Notifier:		Not reported
	Biennial Report Cycle:		Not reported
	Accessibility:		Not reported
	Active Site Indicator:		Not reported
	State District Owner:		MA
	State District:		
	Mailing Address:		
	Owner Name:		PROVINCE LOWIN, IMA 02057
	Owner Type:		Private
	Operator Name	PROVINCETOWN CITY	OF SHWE SITE
	Operator Type:		Private
	Short-Term Generator Activity:		No
	Importer Activity:		No
	Mixed Waste Generator:		No
	Transporter Activity:		No
	Transfer Facility Activity:		No
	Recycler Activity with Storage:		No
	Small Quantity On-Site Burner Exem	ption:	No
	Smelting Melting and Refining Furna	ce Exemption:	No
	Underground Injection Control:		No
	Off-Site Waste Receipt:		No
	Universal Waste Indicator:		NO
	Universal Waste Destination Facility:		INO No
	regeral Universal Waste:		INU

Active Site Fed-Reg Treatment Storage and Disposal Facility:

Not reported

Database(s)

EDR ID Number EPA ID Number

PROVINCETOWN WATER (Continued)

Active Site Converter Treatment storage and Disposal Facility:	Not reported
Active Site State-Reg Treatment Storage and Disposal Facility:	Not reported
Active Site State-Reg Handler:	
Federal Facility Indicator:	Not reported
Hazardous Secondary Material Indicator:	NN
Sub-Part K Indicator:	Not reported
Commercial TSD Indicator:	No
Treatment Storage and Disposal Type:	Not reported
2018 GPRA Permit Baseline:	Not on the Baseline
2018 GPRA Renewals Baseline:	Not on the Baseline
Permit Renewals Workload Universe:	Not reported
Permit Workload Universe:	Not reported
Permit Progress Universe:	Not reported
Post-Closure Workload Universe:	Not reported
Closure Workload Universe:	Not reported
202 GPRA Corrective Action Baseline:	No
Corrective Action Workload Universe:	No
Subject to Corrective Action Universe:	No
Non-TSDFs Where RCRA CA has Been Imposed Universe:	No
TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe:	No
TSDFs Only Subject to CA under Discretionary Auth Universe:	No
Corrective Action Priority Ranking:	No NCAPS ranking
Environmental Control Indicator:	No
Institutional Control Indicator:	No
Human Exposure Controls Indicator:	N/A
Groundwater Controls Indicator:	N/A
Operating TSDF Universe:	Not reported
Full Enforcement Universe:	Not reported
Significant Non-Complier Universe:	No
Unaddressed Significant Non-Complier Universe:	No
Addressed Significant Non-Complier Universe:	No
Significant Non-Complier With a Compliance Schedule Universe:	No
Financial Assurance Required: Not reported	
Handler Date of Last Change:	20171020
Recognized Trader-Importer:	No
Recognized Trader-Exporter:	No
Importer of Spent Lead Acid Batteries:	No
Exporter of Spent Lead Acid Batteries:	No
Recycler Activity Without Storage:	No
Manifest Broker:	No
Sub-Part P Indicator:	No

1000433238

Hazardous Waste Summary:	
Waste Code:	U019
Waste Description:	BENZEN

Waste Code: Waste Description: BENZENE (I,T) U220 BENZENE, METHYL- (OR) TOLUENE

Waste Code: Waste Description: U239 BENZENE, DIMETHYL- (I,T) (OR) XYLENE (I)

Handler - Owner Operator:

Owner/Operator Indicator: Owner Owner/Operator Name: TOWN OF PROVINCETOWN

Database(s) Ef

EDR ID Number EPA ID Number

1000433238

PROVINCETOWN WATER (Continued)

Legal Status: Private Date Became Current: 20041016 Date Ended Current: Not reported Owner/Operator Address: TOWN HALL 260 COMMERCIAL ST Owner/Operator City,State,Zip: PROVINCETOWN, MA 02657 Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported Owner/Operator Fax: Not reported Owner/Operator Email: Not reported **Owner/Operator Indicator:** Operator Owner/Operator Name: PROVINCETOWN CITY OF SHWF SITE Legal Status: Private Date Became Current: 19911208 Date Ended Current: 19990416 TOWN HALL 260 COMMERCIAL ST Owner/Operator Address: Owner/Operator City,State,Zip: PROVINCETOWN, MA 02657 Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported **Owner/Operator Fax:** Not reported Owner/Operator Email: Not reported Historic Generators: 19860331 Receive Date: PROVINCETOWN WATER Handler Name: Federal Waste Generator Description: Not a generator, verified State District Owner: MA Large Quantity Handler of Universal Waste: No Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No Current Record: Yes Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported List of NAICS Codes and Descriptions: No NAICS Codes Found NAICS Codes: Facility Has Received Notices of Violations: Violations: No Violations Found **Evaluation Action Summary:** No Evaluations Found **Evaluations:**

Map ID	
Direction	
Distance	
Flevation	Site

Database(s)

EDR ID Number EPA ID Number

5 NNE 1/4-1/2 0.270 mi. 1424 ft.	WATTS SERVICE CTR/S HOLLOW 372 ROUTE 6 TRURO, MA 02666	WELLFIELD	SEMS-ARCHIVE LUST RELEASE	1003862278 MAD044806594
Relative: Higher Actual: 56 ft.	SEMS Archive: Site ID: EPA ID: Name: Address: Address 2: City,State,Zip: Cong District: FIPS Code: FF: NPL: Non NPL Status:	0100505 MAD044806594 WATTS SERVICE CTR/S HOLLOW WELLFIEL 372 ROUTE 6 Not reported TRURO, MA 02666 12 25001 N Not on the NPL NFRAP-Site does not qualify for the NPL based	D on existing informatior	I
	SEMS Archive Detail: Region: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Code: Action Name: SEQ: Start Date: Qual: Current Action Lead: Region: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Code: Action Name: SEQ: Start Date: Finish Date: QUI: Action Code: Action Name: SEQ: Start Date: Finish Date: Qual: Current Action Lead: Region: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Lead: Region: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Code: Action Lead: Region: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Code: Action Code: Action Code: Site ID: EPA ID: Site Name: NPL: FF: OU: Action Code: Action Code: Action Code: Action Name: SEQ:	01 0100505 MAD044806594 WATTS SERVICE CTR/S HOLLOW W N N 00 VS ARCH SITE 1 Not reported 1982-04-01 05:00:00 Not reported EPA Perf In-Hse 01 0100505 MAD044806594 WATTS SERVICE CTR/S HOLLOW W N N 00 DS DISCVRY 1 1977-12-01 05:00:00 1977-12-01 05:00:00 Not reported EPA Perf 01 0100505 MAD044806594 WATTS SERVICE CTR/S HOLLOW W N N 00 PA PA PA 1	/ELLFIELD /ELLFIELD	

Database(s)

EDR ID Number EPA ID Number

1003862278

WATTS SERVICE CTR/S HOLLOW WELLFIELD (Continued)

Start Date:Not reportedFinish Date:1982-04-01 05:00:00Qual:NCurrent Action Lead:EPA Perf

LUST:

Facility:	
Name:	WATTS SERV WELLFIELD
Address:	OFF RTE 6A
City,State,Zip:	TRURO, MA 02666
Current Status:	Response Action Outcome
Release Tracking Number/Current Status:	4-0000170 / RAO
Status Date:	12/31/1996
Source Type:	UST
Release Town:	TRURO
Notification Date:	10/15/1987
Category:	NONE
Associated ID:	Not reported
Phase:	Not reported
Response Action Outcome:	A2 - A permanent solution has been achieved. Contamination has not
	been reduced to background.
Oil Or Haz Material:	Not reported
Location Type:	GASSTATION

Click here to access the MA DEP site for this facility:

Chemicals:

Source:

Chemical: Quantity:

Actions: Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: UNKNOWN Not reported

UST

Release Disposition Valid Transition Site 10/15/1987 A permanent solution has been achieved. Contamination has not been reduced to background.

RAO - DEP Lead RAO Statement Received 12/31/1996 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FLDRUN 9/23/1996 A permanent solution has been achieved. Contamination has not been reduced to background.

Database(s)

EDR ID Number EPA ID Number

WATTS SERVICE CTR/S HOLLOW WELLFIELD (Continued)

1003862278

Release:	
Name:	WATTS SERV WELLFIELD
Address:	OFF RTE 6A
City,State,Zip:	TRURO, MA 02666
Release Tracking Number/Current Status:	4-0000170 / RAO
Primary ID:	Not reported
Official City:	TRURO
Notification:	10/15/1987
Category:	NONE
Status Date:	12/31/1996
Phase:	Not reported
Response Action Outcome:	A2 - A permanent solution has been achieved. Contamination has not been reduced to background.
Oil / Haz Material Type:	Not reported

Release Disposition Valid Transition Site

reduced to background.

10/15/1987

Click here to access the MA DEP site for this facility:

Actions: Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: RAO - DEP Lead RAO Statement Received 12/31/1996 A permanent solution has been achieved. Contamination has not been reduced to background.

A permanent solution has been achieved. Contamination has not been

Action Type: Action Status: Action Date: Response Action Outcome: RLFA FLDRUN 9/23/1996 A permanent solution has been achieved. Contamination has not been reduced to background.

Chemicals: Chemical: Quantity: Location Type: Source:

UNKNOWN Not reported GASSTATION UST

6 NORTH TRURO POST OFFICE North 34 SHORE RD 1/4-1/2 TRURO, MA 02666 0.448 mi. 2363 ft.

 Relative:
 LAST:

 Lower
 Name:

 Actual:
 Address:

 13 ft.
 City,State,Zip:

 Release Trackii
 Source Type:

 Release Town:

 Name:
 NORTH TRURO POST OFFICE

 Address:
 34 SHORE RD

 City,State,Zip:
 TRURO, MA 026660000

 Release Tracking Number/Current Status:
 4-0011029 / RAO

 Source Type:
 AST

 Release Town:
 TRURO

 Notification Date:
 01/03/1995

LAST S102088269 RELEASE N/A

Database(s)

EDR ID Number **EPA ID Number**

NORTH TRURO POST OFFICE (Continued)

Phase:

Chemicals:

Source:

Actions:

S102088269 Category: TWO HR Associated ID: Not reported Status Date: 08/08/1995 Not reported **Response Action Outcome:** A1 - A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Oil Or Haz Material: Oil Chemical: FUEL OIL Quantity: 150 gallons #2 FUEL OIL Chemical: 190 gallons Quantity: MUNICIPAL Location Type: AST Action Type: **Release Disposition** Action Status: Reportable Release under MGL 21E Action Date: 1/3/1995 A permanent solution has been achieved. Contamination has been reduced Response Action Outcome: to background or a threat of release has been eliminated. Action Type: RLFA Action Status: FOLFLD Action Date: 1/3/1995 Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Action Type: A Notice sent to a Potentially Responsible Party (PRP) Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc. Action Date: 1/3/1995 **Response Action Outcome:** A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action Action Date: 1/3/1995 **Response Action Outcome:** A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Action Type: RLFA Action Status: FOLOFF Action Date: 1/4/1995 **Response Action Outcome:** A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Action Type: Immediate Response Action Action Status: Written Approval of Plan Action Date: 1/9/1995 A permanent solution has been achieved. Contamination has been reduced **Response Action Outcome:** to background or a threat of release has been eliminated. Action Type: A Notice sent to a Potentially Responsible Party (PRP) Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc. Action Date: 1/9/1995 A permanent solution has been achieved. Contamination has been reduced Response Action Outcome: to background or a threat of release has been eliminated.

EDR ID Number Database(s) EPA ID Number

NORTH TRURO POST OFFICE (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: RNF Reportable Release under MGL 21E 2/9/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. Immediate Response Action Written Plan Received

3/2/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Imminent Hazard Evaluation Received 3/2/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RLFA FOLOFF 3/21/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Written Approval of Plan 3/22/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RLFA FOLFLD 5/23/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Status or Interim Report Received 6/23/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Response Action Outcome - RAO Fee Received - FMCRA Use Only 8/15/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Completion Statement Received 8/8/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Response Action Outcome - RAO RAO Statement Received 8/8/1995

S102088269

EDR ID Number Database(s) EPA ID Number

S102088269

NORTH TRURO POST OFFICE (Continued)

Response Action Outcome:

A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Release:	
Name:	NORTH TRURO POST OFFICE
Address:	34 SHORE RD
City,State,Zip:	TRURO, MA 026660000
Release Tracking Number/Current Status:	4-0011029 / RAO
Primary ID:	Not reported
Official City:	TRURO
Notification:	01/03/1995
Category:	TWO HR
Status Date:	08/08/1995
Phase:	Not reported
Response Action Outcome:	A1 - A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.
Oil / Haz Material Type:	Oil

Release Disposition

1/3/1995

Reportable Release under MGL 21E

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: RLFA FOLFLD 1/3/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated. A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 1/3/1995

A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Oral Approval of Plan or Action 1/3/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RLFA FOLOFF 1/4/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Written Approval of Plan 1/9/1995 A permanent solution has been achieved. Contamination has been reduced

NORTH TRURO POST OFFICE (Continued)

S102088269

to background or a threat of release has been eliminated.

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type:

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 1/9/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RNF Reportable Release under MGL 21E 2/9/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Written Plan Received 3/2/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Imminent Hazard Evaluation Received 3/2/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RLFA FOLOFF 3/21/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Written Approval of Plan 3/22/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

RLFA FOLFLD 5/23/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action Status or Interim Report Received 6/23/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Response Action Outcome - RAO Fee Received - FMCRA Use Only 8/15/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Immediate Response Action

FUEL OIL 150 gallons

#2 FUEL OIL

190 gallons MUNICIPAL EDR ID Number Database(s) EPA ID Number

S102088269

NORTH TRURO POST OFFICE (Continued)

Chemicals:

Chemical: Quantity:

Chemical:

Quantity: Location Type:

Action Status: Action Date: Response Action Outcome:	Completion Statement Received 8/8/1995 A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.
Action Type: Action Status: Action Date:	Response Action Outcome - RAO RAO Statement Received 8/8/1995
Response Action Outcome:	A permanent solution has been achieved. Contamination has been reduced to background or a threat of release has been eliminated.

Source:	AST	
S HIGHLAND RD LANDFILL HIGHLAND RD TRURO, MA 02666	SHWS INST CONTROL RELEASE	S105200407 N/A
SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	S HIGHLAND RD LANDFILL HIGHLAND RD TRURO, MA 02666 4-000897 UNCONTAIN TRURO 07/15/1990 NONE Not reported RAO 04/08/2005 Not reported A3 Not reported	
INST CONTROL: Name: Address: City,State,Zip: Release Tracking Number: Action Type: Action Stat: Action Date: Response Action Outcome: Name: Address: City,State,Zip:	S HIGHLAND RD LANDFILL HIGHLAND RD TRURO, MA 02666 4-0000897 AUL LEGNOT 05/04/2005 A3 - A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented. S HIGHLAND RD LANDFILL HIGHLAND RD TRURO, MA 02666	
	Source: SHIGHLAND RD LANDFILL HIGHLAND RD TRURO, MA 02666 SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material: INST CONTROL: Name: Address: City,State,Zip: Release Tracking Number: Action Type: Action Stat: Action Date: Response Action Outcome: Name: Address: City,State,Zip: Release Tracking Number: Address: City,State,Zip: Response Action Outcome: Name: Address: City,State,Zip: Release Tracking Number: Address: City,State,Zip: Release Tracking Number: Address: City,State,Zip: Release Tracking Number: Address: City,State,Zip: Release Tracking Number:	Source: AS1 SHIGHLAND RD LANDFILL HIGHLAND RD LANDFILL HIGHLAND RD SHWS: Name: SHIGHLAND RD LANDFILL Address: HIGHLAND RD LANDFILL Address: HIGHLAND RD City,State,Zip: TRURO, MA 02666 Facility ID: 4-000897 Source Type: UNCONTAIN Release Town: TRURO Notification Date: 07/15/1990 Category: NONE Associated ID: Not reported Current Status: RAO Status Date: 04/08/2005 Phase: Not reported INST CONTROL: Name: SHIGHLAND RD LANDFILL Address: HIGHLAND RD City,State,Zip: TRURO, MA 02666 Release Tracking Number: 4-000897 Action Type: AUL Action Date: 05/04/2005 Response Action Outcome: A3 - A permanent solution has been achieved. Contamination has not City,State,Zip: TRURO, MA 02666 Release Tracking Number: 4-000897 Action Type: AUL Action Date: 05/04/2005 Response Action Outcome: A3 - A permanent solution has been achieved. Contamination has not City,State,Zip: TRURO, MA 02666 Release Tracking Number: 4-000897 Action Type: AUL Action Stat: EEGNOT Action Date: 05/04/2005 Response Action Outcome: A3 - A permanent solution has been achieved. Contamination has not City,State,Zip: TRURO, MA 02666 Release Tracking Number: 4-000897 Action Type: AUL Action Stat: EEGNOT Action Date: 05/04/2005 Response Action Outcome: A3 - A permanent solution has been achieved. Contamination has not City,State,Zip: TRURO, MA 02666 Release Tracking Number: 4-000897 City,State,Zip: TRURO, MA 02666 City,S

Database(s) EPA ID Nu

EDR ID Number EPA ID Number

S105200407

S HIGHLAND RD LANDFILL (Continued)

	Action Type: Action Stat: Action Date: Response Action Outcome:	AUL RECPT 04/08/2005 A3 - A permanent solu been reduced to back has been implemente	ution has been achieved. Contamination I ground and an Activity and use Limitation d.	has not (AUL)
	Name: Address: City,State,Zip: Release Tracking Number: Action Type: Action Stat: Action Date: Response Action Outcome:	S HIGHLAND RD LAI HIGHLAND RD TRURO, MA 02666 4-0000897 AUL SNAUDI 10/17/2008 A3 - A permanent solu been reduced to back has been implemente	NDFILL ution has been achieved. Contamination I ground and an Activity and use Limitation d.	has not (AUL)
	Name: Address: City,State,Zip: Release Tracking Number: Action Type: Action Stat: Action Date: Response Action Outcome:	S HIGHLAND RD LAI HIGHLAND RD TRURO, MA 02666 4-0000897 AUL TSAUD 08/04/2005 A3 - A permanent solu been reduced to back has been implemente	NDFILL ution has been achieved. Contamination I ground and an Activity and use Limitation d.	has not (AUL)
R	elease: Name: Address: City,State,Zip: Release Tracking Number/Cu Primary ID: Official City: Notification: Category: Status Date: Phase: Response Action Outcome:	S HIGHL HIGHLAN TRURO, rent Status: 4-00088 Not repor TRURO 07/15/19 NONE 04/08/200 Not repor A3 - A ped been red	AND RD LANDFILL ND RD MA 02666 97 / RAO ted 90 05 ted 97manent solution has been achieved. Co uced to background and an Activity and u	ntamination has not se Limitation (AUL)
	Oil / Haz Material Type:	has been Not repoi	rted	

Click here to access the MA DEP site for this facility:

Actions:

Action Type:	Activity and Use Limitation
Action Status:	Level II - Audit Inspection
Action Date:	10/17/2008
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	An activity type that is related to an Audit

EDR ID Number Database(s) EPA ID Number

05200407

Action Status:	NAFNVD
Action Date:	10/17/2008
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	RLFA
Action Status:	FLDRUN
Action Date:	2/26/1997
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be
	reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 4
Action Status:	Written Plan Received
Action Date:	4/4/2003
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 1
Action Status:	Completion Statement Received
Action Date:	4/7/2000
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be
	reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Tier Classification
Action Status:	Tier 2 Classification
Action Date:	4/7/2000
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Compliance and Enforcement Action
Action Status:	Notice of Non-Compliance Issued
Action Date:	4/7/2000
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be
	reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Tier Classification
Action Status:	Transmittal, Notice, or Notification Received
Action Date:	4/7/2000
Response Action Outcome:	A permanent solution has been achieved. Contamination has not be
	reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	A Notice sent to a Potentially Responsible Party (PRP)
Action Status:	A MassDEP piece of correspondence was issued (approvals, NORs
Action Date:	4/8/1999
	A permanent solution has been achieved. Contamination has not be reduced to background and an Activity and use Limitation (ALIL) has
Response Action Outcome:	been implemented.
Response Action Outcome:	been implemented.
Response Action Outcome: Action Type: Action Status:	been implemented. Phase 2 Completion Statement Received

EDR ID Number Database(s) EPA ID Number

HLAND RD LANDFILL (Continued)) S1052004
Action Date:	4/8/2002
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 3
Action Status:	Completion Statement Received
Action Date:	4/8/2002
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 4
Action Status:	Completion Statement Received
Action Date:	4/8/2005
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 4
Action Status:	As-Built Construction Report Received
Action Date:	4/8/2005
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Activity and Use Limitation
Action Status:	Transmittal, Notice, or Notification Received
Action Date:	4/8/2005
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Response Action Outcome - RAO
Action Status:	RAO Statement Received
Action Date:	4/8/2005
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Activity and Use Limitation
Action Status:	Legal Notice Published
Action Date:	5/4/2005
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been
	reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Release Disposition
Action Status:	Valid Transition Site
Action Date:	7/15/1990
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.
Action Type:	Phase 2
Action Status:	Scope of Work Received

407

EDR ID Number Database(s) EPA ID Number

	S HIGHLAND RD LANDFILL (Continued)	S105200407	
	Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.	
	Action Type: Action Status: Action Date: Response Action Outcome:	Activity and Use Limitation Level I - Technical Screen Audit 8/4/2005 A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.	
	Action Type: Action Status: Action Date: Response Action Outcome:	Response Action Outcome - RAO Level I - Technical Screen Audit 8/8/2005 A permanent solution has been achieved. Contamination has not been reduced to background and an Activity and use Limitation (AUL) has been implemented.	
	Chemicals: Chemical: Quantity: Location Type: Source:	UNKNOWN Not reported LANDFILL UNCONTAIN	
8 NE 1/2-1 0.540 mi. 2852 ft.	WTP SO. HOLLOW WELLFIELD 11 SOUTH HOLLOW RD TRURO, MA 02666	SHWS S106863510 RELEASE N/A	
Relative: Lower Actual: 24 ft.	SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	WTP SO. HOLLOW WELLFIELD 11 SOUTH HOLLOW RD TRURO, MA 026660000 4-0018962 Not reported TRURO 03/11/2005 TWO HR Not reported RAO 05/09/2005 Not reported A2 Hazardous Material	
	Release: Name: Address: City,State,Zip: Release Tracking Number/Current Status: Primary ID: Official City: Notification: Category: Status Date: Phase:	WTP SO. HOLLOW WELLFIELD 11 SOUTH HOLLOW RD TRURO, MA 026660000 4-0018962 / RAO Not reported TRURO 03/11/2005 TWO HR 05/09/2005 Not reported	

EDR ID Number Database(s) EPA ID Number

WTP SO. HOLLOW WELLFIELD (Continued) S106863510 **Response Action Outcome:** A2 - A permanent solution has been achieved. Contamination has not been reduced to background. Oil / Haz Material Type: Hazardous Material Click here to access the MA DEP site for this facility: Actions: Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action Action Date: 3/11/2005 **Response Action Outcome:** A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: RLFA FOLOFF Action Status: 3/11/2005 Action Date: **Response Action Outcome:** A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: **Release Disposition** Action Status: Reportable Release under MGL 21E Action Date: 3/11/2005 **Response Action Outcome:** A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: Compliance and Enforcement Action REFAG Action Status: Action Date: 3/16/2005 Response Action Outcome: A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: RLFA Action Status: FLDD1A 3/25/2005 Action Date: A permanent solution has been achieved. Contamination has not been Response Action Outcome: reduced to background. Action Type: A Notice sent to a Potentially Responsible Party (PRP) Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc. 4/5/2005 Action Date: **Response Action Outcome:** A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: Response Action Outcome - RAO Action Status: Level I - Technical Screen Audit Action Date: 5/25/2005 **Response Action Outcome:** A permanent solution has been achieved. Contamination has not been reduced to background. Action Type: RNF Action Status: Reportable Release under MGL 21E Action Date: 5/9/2005 A permanent solution has been achieved. Contamination has not been **Response Action Outcome:** reduced to background. Action Type:

Immediate Response Action Completion Statement Received

Action Status:

EDR ID Number Database(s) EPA ID Number

	WTP SO. HOLLOW WELLFIELD (Continued)		S106863510
	Action Date: Response Action Outcome:	5/9/2005 A permanent solution has been achieved. reduced to background.	Contamination has not been
	Action Type: Action Status: Action Date: Response Action Outcome:	Response Action Outcome - RAO RAO Statement Received 5/9/2005 A permanent solution has been achieved. reduced to background.	Contamination has not been
	Chemicals: Chemical: Quantity: Location Type:	POTASSIUM HYDROXIDE 8 gallons MUNICIPAL	
9 North 1/2-1 0.605 mi. 3197 ft.	NO LOCATION AID LONG NOOK RD TRURO, MA 02666		SHWS S102618672 RELEASE N/A
Relative: Lower Actual: 45 ft.	SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	NO LOCATION AID LONG NOOK RD TRURO, MA 026660000 4-0012923 TRANSFORM TRURO 04/01/1997 TWO HR Not reported RAO 05/30/1997 Not reported A1 Hazardous Material	
	Release: Name: Address: City,State,Zip: Release Tracking Number/Current Status: Primary ID: Official City: Notification: Category: Status Date: Phase: Response Action Outcome: Oil / Haz Material Type:	NO LOCATION AID LONG NOOK RD TRURO, MA 026660000 4-0012923 / RAO Not reported TRURO 04/01/1997 TWO HR 05/30/1997 Not reported A1 - A permanent solution has been achie reduced to background or a threat of relea Hazardous Material	ved. Contamination has been se has been eliminated.

Click here to access the MA DEP site for this facility:

Actions:

Action Type:

Immediate Response Action
4/1/1997

4/1/1997

RLFA FOLOFF

4/1/1997

4/11/1997

5/19/1997

5/30/1997

RNF

Release Disposition

Oral Approval of Plan or Action

Reportable Release under MGL 21E

Reportable Release under MGL 21E

Response Action Outcome - RAO

RAO Statement Received

A permanent solution has been achieved. Contamination has been reduced

A permanent solution has been achieved. Contamination has been reduced

A permanent solution has been achieved. Contamination has been reduced

A MassDEP piece of correspondence was issued (approvals, NORs, etc.

A permanent solution has been achieved. Contamination has been reduced

A permanent solution has been achieved. Contamination has been reduced

A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

to background or a threat of release has been eliminated.

to background or a threat of release has been eliminated.

to background or a threat of release has been eliminated.

to background or a threat of release has been eliminated.

to background or a threat of release has been eliminated.

A Notice sent to a Potentially Responsible Party (PRP)

EDR ID Number Database(s) **EPA ID Number**

S102618672

NO LOCATION AID (Continued)

Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Chemicals: Chemical: Quantity:

Location Type: Location Type: Source:

PCB OIL 15 gallons ROADWAY STATE TRANSFORM

10 FORMER AIR BASE 32 OLD DEWLINE RD NE 1/2-1 NORTH TRURO, MA 02652 0.858 mi.

4528 ft. **Relative:** Higher

Actual:

129 ft.

SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category:

FORMER AIR BASE 32 OLD DEWLINE RD NORTH TRURO, MA 026520000 4-0019586 PIPE TRURO 01/26/2006 72 HR

S107678074 LUST N/A RELEASE

SHWS

Database(s)

EDR ID Number **EPA ID Number**

S107678074

FORMER AIR BASE (Continued)

Associated ID:	Not reported
Current Status:	RAO
Status Date:	03/28/2006
Phase:	Not reported
Response Action Outcome:	A2
Oil Or Haz Material:	Oil

LUS

LUST:		
Facility:		
Name:	FORMER AIR BASE	
Address:	32 OLD DEWLINE RD	
City,State,Zip:	NORTH TRURO, MA 026520000	
Current Status:	Response Action Outcome	
Release Tracking Number/Current Status:	4-0019586 / RAO	
Status Date:	03/28/2006	
Source Type:	UST	
Release Town:	TRURO	
Notification Date:	01/26/2006	
Category:	72 HR	
Associated ID:	Not reported	
Phase:	Not reported	
Response Action Outcome:	A2 - A permanent solution has been achieved.	Contamination has not
	been reduced to background.	
Oil Or Haz Material:	Oil	
Location Type:	FEDERAL	
Source:	PIPE	
Source:	UST	

Click here to access the MA DEP site for this facility:

Chemicals: Chemical: Quantity:

Actions: Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: GASOLINE Not reported

Release Disposition Reportable Release under MGL 21E 1/26/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FLDD1A 1/26/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FLDRAN 1/27/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

EDR ID Number Database(s) EPA ID Number

S107678074

FORMER AIR BASE (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

2/27/2006 A permanent solution has been achieved. Contamination has not been reduced to background. RLFA FOLOFF 2/8/2006

A MassDEP piece of correspondence was issued (approvals, NORs, etc.

A Notice sent to a Potentially Responsible Party (PRP)

A permanent solution has been achieved. Contamination has not been reduced to background.

RNF Reportable Release under MGL 21E 3/28/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO RAO Statement Received 3/28/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO Level I - Technical Screen Audit 8/11/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

Re	elease:		
	Name:	FORMER AIR BASE	
	Address:	32 OLD DEWLINE RD	
	City,State,Zip:	NORTH TRURO, MA 026520000	
	Release Tracking Number/Current Status:	4-0019586 / RAO	
	Primary ID:	Not reported	
	Official City:	TRURO	
	Notification:	01/26/2006	
	Category:	72 HR	
	Status Date:	03/28/2006	
	Phase:	Not reported	
	Response Action Outcome:	A2 - A permanent solution has been achieved.	Contamination has not
		been reduced to background.	
	Oil / Haz Material Type:	Oil	

Click here to access the MA DEP site for this facility:

Action Type:

Actions:	
Action Type:	Release Disposition
Action Status:	Reportable Release under MGL 21E
Action Date:	1/26/2006
Response Action Outcome:	A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA

TC7228749.1s Page 32

RLFA

EDR ID Number Database(s) EPA ID Number

S107678074

FORMER AIR BASE (Continued)

Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Chemicals: Chemical: Quantity: Location Type: Source: Source: FLDD1A 1/26/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

FLDRAN 1/27/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 2/27/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 2/8/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

RNF Reportable Release under MGL 21E 3/28/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO RAO Statement Received 3/28/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO Level I - Technical Screen Audit 8/11/2006 A permanent solution has been achieved. Contamination has not been reduced to background.

GASOLINE Not reported FEDERAL PIPE UST

Database(s)

EDR ID Number EPA ID Number

11 SSE 1/2-1 0.887 mi. 4684 ft.	NO LOCATION AID 1 PERRY RD TRURO, MA 02666		SHWS LAST RELEASE	S102087911 N/A
Relative: Higher Actual: 72 ft.	SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	NO LOCATION AID 1 PERRY RD TRURO, MA 02666 4-0010336 BASEMENT TRURO 03/15/1994 TWO HR Not reported RAO 03/10/1995 Not reported A2 Oil		
	LAST: Name: Address: City,State,Zip: Release Tracking Number/Current Status: Source Type: Release Town: Notification Date: Category: Associated ID: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	NO LOCATION AID 1 PERRY RD TRURO, MA 02666 4-0010336 / RAO AST TRURO 03/15/1994 TWO HR Not reported 03/10/1995 Not reported A2 - A permanent solution has been achieved. been reduced to background. Oil	Contaminatior	n has not
	Chemicals: Chemical: Quantity: Location Type: Source: Source: Actions:	#2 FUEL OIL 200 gallons RESIDNTIAL BASEMENT AST		
	Action Type: Action Status: Action Date: Response Action Outcome:	An activity type that is related to an Audit NOA 11/17/1995 A permanent solution has been achieved. Conta reduced to background.	amination has	not been
	Action Type: Action Status: Action Date: Response Action Outcome:	An activity type that is related to an Audit NAFNVD 2/20/1996 A permanent solution has been achieved. Conta reduced to background.	amination has	not been
	Action Type: Action Status:	Immediate Response Action Completion Statement Received		

EDR ID Number Database(s) EPA ID Number

S102087911

NO LOCATION AID (Continued)

Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: 3/10/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO RAO Statement Received 3/10/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO Fee Received - FMCRA Use Only 3/13/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Release Disposition Reportable Release under MGL 21E 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLFLD 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 3/16/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 3/18/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 3/22/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RNF Reportable Release under MGL 21E 4/12/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

EDR ID Number Database(s) **EPA ID Number**

S102087911

NO LOCATION AID (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:** Immediate Response Action Written Plan Received 4/12/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Written Approval of Plan 4/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 4/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLFLD 5/25/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 5/25/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 5/9/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 5/9/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Written Plan Received 6/14/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Release: Name: Address: City,State,Zip: Release Tracking Number/Current Status: 4-0010336 / RAO Primary ID: Official City: Notification:

NO LOCATION AID 1 PERRY RD TRURO, MA 02666 Not reported TRURO 03/15/1994

EDR ID Number Database(s) EPA ID Number

S102087911

NO LOCATION AID (Continued)

 Category:
 TWO HR

 Status Date:
 03/10/1995

 Phase:
 Not reported

 Response Action Outcome:
 A2 - A permanent solution has been achieved. Contamination has not been reduced to background.

 Oil / Haz Material Type:
 Oil

Click here to access the MA DEP site for this facility:

Actions: Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome: An activity type that is related to an Audit NOA 11/17/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

An activity type that is related to an Audit NAFNVD 2/20/1996 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Completion Statement Received 3/10/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO RAO Statement Received 3/10/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO Fee Received - FMCRA Use Only 3/13/1995 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Release Disposition Reportable Release under MGL 21E 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLFLD 3/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

EDR ID Number Database(s) EPA ID Number

S102087911

NO LOCATION AID (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: RLFA FOLOFF 3/16/1994 A permanent solution has been achieved. Contamination has not been reduced to background. A Notice sent to a Potentially Responsible Party (PRP)

A MassDEP piece of correspondence was issued (approvals, NORs, etc. 3/18/1994 A permanent solution has been achieved. Contamination has not been

reduced to background.

RLFA FOLOFF 3/22/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RNF Reportable Release under MGL 21E 4/12/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Written Plan Received 4/12/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Written Approval of Plan 4/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 4/15/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLFLD 5/25/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 5/25/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FOLOFF 5/9/1994

EDR ID Number Database(s) EPA ID Number

NO LOCATION AID (Continued)

Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Chemicals: Chemical: Quantity: Location Type: Source: Source:

#2 FUEL OIL 200 gallons RESIDNTIAL BASEMENT AST

12	CITGO GAS STATION
NNW	435 ROUTE 6
1/2-1	TRURO, MA 02652

0.996 mi. 5261 ft. Relative: Higher

Actual:

50 ft.

SHWS: Name: Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: Oil Or Haz Material: Name: Address:

Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: Current Status: Status Date: Phase: Response Action Outcome: CITGO GAS STATION 435 ROUTE 6 TRURO, MA 026520000 4-0028779 HOSE TRURO 05/02/2021 TWO HR Not reported PSNC 04/26/2022 Not reported ΡN Not reported CITGO GAS STATION 435 ROUTE 6 TRURO, MA 026520000 4-0028779 GAS STATIO TRURO 05/02/2021 TWO HR Not reported PSNC 04/26/2022 Not reported ΡN

S102087911

A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 5/9/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Written Plan Received 6/14/1994 A permanent solution has been achieved. Contamination has not been reduced to background.

> SHWS S127590317 RELEASE N/A

Database(s)

EDR ID Number EPA ID Number

S127590317

CITGO GAS STATION (Continued)

Oil Or Haz Material:

Not reported

Release:	
Name:	CITGO GAS STATION
Address:	435 ROUTE 6
City,State,Zip:	TRURO, MA 026520000
Release Tracking Number/Current Status:	4-0028779 / PSNC
Primary ID:	Not reported
Official City:	TRURO
Notification:	05/02/2021
Category:	TWO HR
Status Date:	04/26/2022
Phase:	Not reported
Response Action Outcome:	PN - PN
Oil / Haz Material Type:	Not reported

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: 4/26/2022 PN BOL Transmittal, Notice, or Notification Received 5/14/2021

Response Action Outcome - RAO

PN

PSNRCD

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 5/17/2021 PN

Release Disposition Reportable Release under MGL 21E 5/2/2021 PN

Immediate Response Action Oral Approval of a Modified Plan 5/7/2021 PN

Immediate Response Action Written Plan Received 7/1/2021 PN

RNFE Transmittal, Notice, or Notification Received 7/1/2021 PN

Immediate Response Action Level I - Technical Screen Audit

EDR ID Number Database(s) EPA ID Number

S127590317

CITGO GAS STATION (Continued)

Action Date: Response Action Outcome:	7/21/2021 PN
Action Type: Action Status: Action Date: Response Action Outcome:	BOL SHPFAC 9/7/2021 PN
Chemicals:	
Chemical:	Not reported
Quantity:	Not reported
Location Type:	COMMERCIAL
Source:	HOSE
Source:	GAS STATIO

TC7228749.1s Page 41

Count: 2 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
NORTH TRURO	S108962702	AIR ROUTE SURVEILLANCE RADAR SITE	OLD DEWLINE RD	02652	SHWS, RELEASE
TRURO	S103812491	NO LOCATION AID	HIGGIN HOLLOW RD	02666	SHWS, RELEASE

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: EPA Telephone: N/A Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665 EPA Region 6 Telephone: 214-655-6659

EPA Region 7 Telephone: 913-551-7247

EPA Region 8 Telephone: 303-312-6774

EPA Region 9 Telephone: 415-947-4246

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: EPA Telephone: N/A Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994 Number of Days to Update: 56 Source: EPA Telephone: 202-564-4267 Last EDR Contact: 08/15/2011 Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Lists of Federal Delisted NPL sites

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: EPA Telephone: N/A Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Quarterly

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 08/25/2022	Source: Env
Date Data Arrived at EDR: 09/06/2022	Telephone:
Date Made Active in Reports: 12/05/2022	Last EDR Co
Number of Days to Update: 90	Next Schedu
• •	Data Dalaga

Source: Environmental Protection Agency Telephone: 703-603-8704 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Quarterly

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Quarterly

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 11/21/2022	Source: EPA
Date Data Arrived at EDR: 11/21/2022	Telephone: 800-424-9346
Date Made Active in Reports: 12/05/2022	Last EDR Contact: 12/21/2022
Number of Days to Update: 14	Next Scheduled EDR Contact: 04/03/2023
	Data Release Frequency: Quarterly

Lists of Federal RCRA TSD facilities

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 11/21/2022 Date Data Arrived at EDR: 11/21/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

Lists of Federal RCRA generators

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 11/21/2022 Date Data Arrived at EDR: 11/21/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 11/21/2022 Date Data Arrived at EDR: 11/21/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators) RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 11/21/2022 Date Data Arrived at EDR: 11/21/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 11/02/2022 Date Data Arrived at EDR: 11/08/2022 Date Made Active in Reports: 01/10/2023 Number of Days to Update: 63 Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 11/01/2022 Next Scheduled EDR Contact: 02/20/2023 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 08/15/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 08/17/2022	Telephone: 703-603-0695
Date Made Active in Reports: 10/24/2022	Last EDR Contact: 11/16/2022
Number of Days to Update: 68	Next Scheduled EDR Contact: 03/06/2023
	Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 08/15/2022 Date Data Arrived at EDR: 08/17/2022 Date Made Active in Reports: 10/24/2022 Number of Days to Update: 68

Source: Environmental Protection Agency Telephone: 703-603-0695 Last EDR Contact: 11/16/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 12/12/2022 Date Data Arrived at EDR: 12/14/2022 Date Made Active in Reports: 12/19/2022 Number of Days to Update: 5 Source: National Response Center, United States Coast Guard Telephone: 202-267-2180 Last EDR Contact: 12/14/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

Lists of state- and tribal hazardous waste facilities

SHWS: Site Transition List

Contains information on releases of oil and hazardous materials that have been reported to DEP.

Date of Government Version: 07/22/2022	Source: Department of Environmental Protection
Date Data Arrived at EDR: 10/03/2022	Telephone: 617-292-5990
Date Made Active in Reports: 12/15/2022	Last EDR Contact: 01/06/2023
Number of Days to Update: 73	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Quarterly

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF: Solid Waste Facility Database/Transfer Stations

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/02/2022 Date Data Arrived at EDR: 05/03/2022 Date Made Active in Reports: 07/22/2022 Number of Days to Update: 80 Source: Department of Environmental Protection Telephone: 617-292-5989 Last EDR Contact: 12/29/2022 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Annually

LF PROFILES: Landfill Profiles Listing

This spreadsheet describes landfills that have actively accepted waste or have closed under MassDEP Solid Waste Regulations first adopted in 1971 (310 CMR 16.00 and 310 CMR 19.00). The list does not include landfills that closed before 1971 (and which never had a MassDEP permit or approval), or for which agency data is incomplete.

Date of Government Version: 07/01/2015 Date Data Arrived at EDR: 10/27/2015 Date Made Active in Reports: 12/14/2015 Number of Days to Update: 48 Source: Department of Environmental Protection Telephone: 617-292-5868 Last EDR Contact: 12/29/2022 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Varies

Lists of state and tribal leaking storage tanks

LUST: Leaking Underground Storage Tank Listing

Sites within the Leaking Underground Storage Tank Listing that have a UST listed as its source.

Date of Government Version: 07/22/2022 Date Data Arrived at EDR: 10/03/2022 Date Made Active in Reports: 12/15/2022 Number of Days to Update: 73 Source: Department of Environmental Protection Telephone: 617-292-5990 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Quarterly

LAST: Leaking Aboveground Storage Tank Sites Sites within the Releases Database that have a AST listed as its source.		
Date of Government Version: 07/22/2022 Date Data Arrived at EDR: 10/03/2022 Date Made Active in Reports: 12/15/2022 Number of Days to Update: 73	Source: Department of Environmental Protection Telephone: 617-292-5500 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Quarterly	
INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.		
Date of Government Version: 04/28/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R5: Leaking Underground Storage T Leaking underground storage tanks located or	ົanks on Indian Land າ Indian Land in Michigan, Minnesota and Wisconsin.	
Date of Government Version: 04/11/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.		
Date of Government Version: 04/20/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada		
Date of Government Version: 04/08/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.		
Date of Government Version: 04/20/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.		
Date of Government Version: 06/02/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/31/2022 Number of Days to Update: 79	Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	

INDIAN LUST R1: Leaking Underground Storage Ta A listing of leaking underground storage tank lo	anks on Indian Land ocations on Indian Land.	
Date of Government Version: 04/28/2021 Date Data Arrived at EDR: 06/11/2021 Date Made Active in Reports: 09/07/2021 Number of Days to Update: 88	Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
INDIAN LUST R7: Leaking Underground Storage Ta LUSTs on Indian land in Iowa, Kansas, and Ne	anks on Indian Land braska	
Date of Government Version: 04/14/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies	
Lists of state and tribal registered storage tanks		
FEMA UST: Underground Storage Tank Listing A listing of all FEMA owned underground stora	ge tanks.	
Date of Government Version: 10/14/2021 Date Data Arrived at EDR: 11/05/2021 Date Made Active in Reports: 02/01/2022 Number of Days to Update: 88	Source: FEMA Telephone: 202-646-5797 Last EDR Contact: 12/28/2022 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies	
UST: Summary Listing of all the Tanks Registered in the State of Massachusetts Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.		
Date of Government Version: 07/12/2022 Date Data Arrived at EDR: 07/14/2022 Date Made Active in Reports: 09/27/2022 Number of Days to Update: 75	Source: Department of Fire Services, Office of the Public Safety Telephone: 617-556-1035 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Quarterly	
AST 2: Aboveground Storage Tanks Aboveground storage tanks		
Date of Government Version: 10/06/2022 Date Data Arrived at EDR: 10/06/2022 Date Made Active in Reports: 12/22/2022 Number of Days to Update: 77	Source: Department of Fire Services Telephone: 978-567-3181 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies	
AST: Aboveground Storage Tank Database Registered Aboveground Storage Tanks.		
Date of Government Version: 09/21/2022 Date Data Arrived at EDR: 10/07/2022 Date Made Active in Reports: 12/27/2022 Number of Days to Update: 81	Source: Department of Public Safety Telephone: 617-556-1035 Last EDR Contact: 01/10/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: No Update Planned	

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/08/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64 Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/20/2022	Source: EPA Region 8
Date Data Arrived at EDR: 06/13/2022	Telephone: 303-312-6137
Date Made Active in Reports: 08/16/2022	Last EDR Contact: 01/17/2023
Number of Days to Update: 64	Next Scheduled EDR Contact:

Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/14/2022	Source: EPA Region 7
Date Data Arrived at EDR: 06/13/2022	Telephone: 913-551-7003
Date Made Active in Reports: 08/16/2022	Last EDR Contact: 01/17/2023
Number of Days to Update: 64	Next Scheduled EDR Contact: 05/01/2023
	Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/20/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64 Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/07/2022	Source
Date Data Arrived at EDR: 06/13/2022	Teleph
Date Made Active in Reports: 08/16/2022	Last ED
Number of Days to Update: 64	Next Se
	_

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/11/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64 Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/28/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/16/2022 Number of Days to Update: 64 Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 06/02/2022 Date Data Arrived at EDR: 06/13/2022 Date Made Active in Reports: 08/31/2022 Number of Days to Update: 79 Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

INST CONTROL: Sites With Activity and Use Limitation

Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

Date of Government Version: 07/22/2022	Source: Department of Environmental Protection
Date Data Arrived at EDR: 10/03/2022	Telephone: 617-292-5990
Date Made Active in Reports: 12/15/2022	Last EDR Contact: 01/06/2023
Number of Days to Update: 73	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Quarterly

Lists of state and tribal voluntary cleanup sites

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008	Source: EPA, Region 7
Date Data Arrived at EDR: 04/22/2008	Telephone: 913-551-7365
Date Made Active in Reports: 05/19/2008	Last EDR Contact: 07/08/2021
Number of Days to Update: 27	Next Scheduled EDR Contact: 07/20/2009
	Data Release Frequency: Varies

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015	Source: EPA. Region 1
Date Data Arrived at EDR: 09/29/2015	Telephone: 617-918-1102
Date Made Active in Reports: 02/18/2016	Last EDR Contact: 12/13/2022
Number of Days to Update: 142	Next Scheduled EDR Contact: 04/03/2023
	Data Release Frequency: Varies

Lists of state and tribal brownfield sites

BROWNFIELDS: Completed Brownfields Covenants Listing

Under Massachusetts law, M.G.L. c. 21E is the statute that governs the cleanup of releases of oil and/or hazardous material to the environment. The Brownfields Act of 1998 amended M.G.L. c. 21E by establishing significant liability relief and financial incentives to spur the redevelopment of brownfields, while ensuring that the Commonwealth's environmental standards are met. Most brownfields are redeveloped with the benefit of liability protections that operate automatically under M.G.L. c. 21E.

Date of Government Version: 04/05/2017 Date Data Arrived at EDR: 08/03/2017 Date Made Active in Reports: 10/10/2017 Number of Days to Update: 68 Source: Office of the Attorney General Telephone: 617-963-2423 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Annually

BROWNFIELDS 2: Potential Brownfields Listing

A listing of potential brownfields site locations in the state.

Date of Government Version: 12/03/2019 Date Data Arrived at EDR: 01/29/2021 Date Made Active in Reports: 04/21/2021 Number of Days to Update: 82 Source: Department of Environmental Protection Telephone: 617-556-1007 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 02/23/2022 Date Data Arrived at EDR: 03/10/2022 Date Made Active in Reports: 03/10/2022 Number of Days to Update: 0 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 12/07/2022 Next Scheduled EDR Contact: 03/27/2023 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands Location of open dumps on Indian land.

Date of Government Version: 12/31/1998	Source: Environmental Protection Agency
Date Data Arrived at EDR: 12/03/2007	Telephone: 703-308-8245
Date Made Active in Reports: 01/24/2008	Last EDR Contact: 10/20/2022
Number of Days to Update: 52	Next Scheduled EDR Contact: 02/06/2023
• •	Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985	Source: Environmental Protection Agency
Date Made Active in Reports: 09/17/2004	Last EDR Contact: 06/09/2004
Number of Days to Update: 39	Next Scheduled EDR Contact: N/A
	Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Data of Covernment Version: 01/12/2000	Source: EBA Region 0
Date of Government version. 01/12/2009	Source. LFA, Region 9
Date Data Arrived at EDR: 05/07/2009	Telephone: 415-947-4219
Date Made Active in Reports: 09/21/2009	Last EDR Contact: 01/13/2023
Number of Days to Update: 137	Next Scheduled EDR Contact: 05/01/2023
	Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014	Source: Department of Health & Human Serivces, Indian Health Service
Date Data Arrived at EDR: 08/06/2014	Telephone: 301-443-1452
Date Made Active in Reports: 01/29/2015	Last EDR Contact: 10/28/2022
Number of Days to Update: 176	Next Scheduled EDR Contact: 02/06/2023
	Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 07/29/2022 Date Data Arrived at EDR: 08/18/2022 Date Made Active in Reports: 10/24/2022 Number of Days to Update: 67 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 11/16/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: No Update Planned

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 07/29/2022 Date Data Arrived at EDR: 08/18/2022 Date Made Active in Reports: 10/24/2022 Number of Days to Update: 67 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 11/16/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: Quarterly

Local Land Records

LIENS: Liens Information Listing A listing of environmental liens.

> Date of Government Version: 03/07/2018 Date Data Arrived at EDR: 03/09/2018 Date Made Active in Reports: 06/21/2018 Number of Days to Update: 104

Source: Department of Environmental Protection Telephone: 617-292-5628 Last EDR Contact: 11/08/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Varies

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 10/27/2022 Date Data Arrived at EDR: 11/01/2022 Date Made Active in Reports: 11/15/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: 202-564-6023 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

ł	HMIRS: Hazardous Materials Information Reporting System Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.		
	Date of Government Version: 09/19/2022 Date Data Arrived at EDR: 09/19/2022 Date Made Active in Reports: 09/30/2022 Number of Days to Update: 11	Source: U.S. Department of Transportation Telephone: 202-366-4555 Last EDR Contact: 12/14/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly	
MA SPILLS: Historical Spill List The Spills Database was the release notification tracking system for spills that occurred prior to October 1, 1993. This information should be considered to be primarily of historical interest since all of the listed spills have either been cleaned up or assigned new tracking numbers and moved to the Reportable Releases or Sites Transitior List databases.			
	Date of Government Version: 09/30/1993 Date Data Arrived at EDR: 12/03/2003 Date Made Active in Reports: 12/31/2003 Number of Days to Update: 28	Source: Department of Environmental Protection Telephone: 617-292-5720 Last EDR Contact: 12/03/2003 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned	
RELEASE: Reportable Releases Contains information on all releases of oil and hazardous materials that have been reported to DEP			
	Date of Government Version: 07/22/2022 Date Data Arrived at EDR: 10/03/2022 Date Made Active in Reports: 12/15/2022 Number of Days to Update: 73	Source: Department of Environmental Protection Telephone: 617-292-5990 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Quarterly	
SPILLS 90: SPILLS90 data from FirstSearch Spills 90 includes those spill and release records available exclusively from FirstSearch databases. Typically, they may include chemical, oil and/or hazardous substance spills recorded after 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 90.			
	Date of Government Version: 12/11/2012 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 02/08/2013 Number of Days to Update: 36	Source: FirstSearch Telephone: N/A Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned	
SPILLS 80: SPILLS80 data from FirstSearch Spills 80 includes those spill and release records available from FirstSearch databases prior to 1990. Typically, they may include chemical, oil and/or hazardous substance spills recorded before 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 80.			
	Date of Government Version: 03/10/1998 Date Data Arrived at EDR: 01/03/2013	Source: FirstSearch Telephone: N/A	

Date Made Active in Reports: 03/05/2013 Number of Days to Update: 61 Source: FirstSearch Telephone: N/A Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 11/21/2022 Date Data Arrived at EDR: 11/21/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 08/11/2022	Source: U
Date Data Arrived at EDR: 08/11/2022	Telephone
Date Made Active in Reports: 09/30/2022	Last EDR
Number of Days to Update: 50	Next Sche

Source: U.S. Army Corps of Engineers Telephone: 202-528-4285 Last EDR Contact: 11/10/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 06/07/2021 Date Data Arrived at EDR: 07/13/2021 Date Made Active in Reports: 03/09/2022 Number of Days to Update: 239 Source: USGS Telephone: 888-275-8747 Last EDR Contact: 01/13/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018SDate Data Arrived at EDR: 04/11/2018TDate Made Active in Reports: 11/06/2019LNumber of Days to Update: 574N

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017 Number of Days to Update: 63 Source: Environmental Protection Agency Telephone: 615-532-8599 Last EDR Contact: 11/03/2022 Next Scheduled EDR Contact: 02/20/2023 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 09/19/2022 Date Data Arrived at EDR: 09/20/2022 Date Made Active in Reports: 12/22/2022 Number of Days to Update: 93 Source: Environmental Protection Agency Telephone: 202-566-1917 Last EDR Contact: 12/14/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/21/2014	Telephone: 617-520-3000
Date Made Active in Reports: 06/17/2014	Last EDR Contact: 10/28/2022
Number of Days to Update: 88	Next Scheduled EDR Contact: 02/16/2023
	Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 73

Source: Environmental Protection Agency Telephone: 703-308-4044 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/16/2023 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/17/2020 Date Made Active in Reports: 09/10/2020 Number of Days to Update: 85

Source: EPA Telephone: 202-260-5521 Last EDR Contact: 12/12/2022 Next Scheduled EDR Contact: 03/27/2023 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2018	Source: EPA
Date Data Arrived at EDR: 08/14/2020	Telephone: 202-566-0250
Date Made Active in Reports: 11/04/2020	Last EDR Contact: 11/01/2022
Number of Days to Update: 82	Next Scheduled EDR Contact: 02/27/2023
	Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 10/17/2022	Source: EPA
Date Data Arrived at EDR: 10/18/2022	Telephone: 202-564-4203
Date Made Active in Reports: 01/10/2023	Last EDR Contact: 01/18/2023
Number of Days to Update: 84	Next Scheduled EDR Contact: 05/01/2023
	Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 10/27/2022	So
Date Data Arrived at EDR: 11/01/2022	Tel
Date Made Active in Reports: 11/15/2022	Las
Number of Days to Update: 14	Ne

Source: EPA Telephone: 703-416-0223 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 03/13/2023 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 04/27/2022 Date Data Arrived at EDR: 05/04/2022 Date Made Active in Reports: 05/10/2022 Number of Days to Update: 6 Source: Environmental Protection Agency Telephone: 202-564-8600 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995 Number of Days to Update: 35 Source: EPA Telephone: 202-564-4104 Last EDR Contact: 06/02/2008 Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 10/27/2022	Source: EPA
Date Data Arrived at EDR: 11/01/2022	Telephone: 202-564-6023
Date Made Active in Reports: 11/15/2022	Last EDR Contact: 01/03/2023
Number of Days to Update: 14	Next Scheduled EDR Contact: 02/16/2023
	Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 01/20/2022 Date Data Arrived at EDR: 01/20/2022	Source: EPA Telephone: 202-566-0500
Date Made Active in Reports: 03/25/2022	Last EDR Contact: 01/04/2023
Number of Days to Update: 64	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016	Source: Environmental Protection Agency
Date Data Arrived at EDR: 11/23/2016	Telephone: 202-564-2501
Date Made Active in Reports: 02/10/2017	Last EDR Contact: 12/28/2022
Number of Days to Update: 79	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Source: EPA/Office of Prevention, Pesticides and Toxic Substances
Telephone: 202-566-1667
Last EDR Contact: 08/18/2017
Next Scheduled EDR Contact: 12/04/2017
Data Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009	Source: EPA
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
	Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 10/26/2022 Date Data Arrived at EDR: 11/22/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 13 Source: Nuclear Regulatory Commission Telephone: 301-415-7169 Last EDR Contact: 01/17/2023 Next Scheduled EDR Contact: 05/01/2023 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2020	Source: Department of Energy
Date Data Arrived at EDR: 11/30/2021	Telephone: 202-586-8719
Date Made Active in Reports: 02/22/2022	Last EDR Contact: 11/29/2022
Number of Days to Update: 84	Next Scheduled EDR Contact: 03/13/2023
	Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/05/2019	Telephone: N/A
Date Made Active in Reports: 11/11/2019	Last EDR Contact: 11/23/2022
Number of Days to Update: 251	Next Scheduled EDR Contact: 03/13/2023
	Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registrat	tion Database
The database of PCB transformer registrations that includes all PCB registration submittals.	
Date of Government Version: 09/13/2019	Source: Environmental Protection Agency

Date of Government Version: 09/13/2019	Source: Environmental Protection Agency
Date Data Arrived at EDR: 11/06/2019	Telephone: 202-566-0517
Date Made Active in Reports: 02/10/2020	Last EDR Contact: 11/03/2022
Number of Days to Update: 96	Next Scheduled EDR Contact: 02/13/2023
	Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019 Number of Days to Update: 84 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 12/20/2022 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2007 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006SourceDate Data Arrived at EDR: 03/01/2007TelephDate Made Active in Reports: 04/10/2007Last ENumber of Days to Update: 40Next S

Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2008 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 01/02/2020SouDate Data Arrived at EDR: 01/28/2020TeleDate Made Active in Reports: 04/17/2020LasNumber of Days to Update: 80Nex

Source: Department of Transporation, Office of Pipeline Safety Telephone: 202-366-4595 Last EDR Contact: 10/24/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 09/30/2022 Date Data Arrived at EDR: 10/21/2022 Date Made Active in Reports: 01/10/2023 Number of Days to Update: 81 Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 03/02/2022 Date Made Active in Reports: 03/25/2022 Number of Days to Update: 23 Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 12/21/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017 Number of Days to Update: 546 Source: USGS Telephone: 202-208-3710 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 07/26/2021 Date Data Arrived at EDR: 07/27/2021 Date Made Active in Reports: 10/22/2021 Number of Days to Update: 87 Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 10/27/2022 Next Scheduled EDR Contact: 02/16/2023 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 08/30/2019	Source: Department of Energy
Date Data Arrived at EDR: 11/15/2019	Telephone: 505-845-0011
Date Made Active in Reports: 01/28/2020	Last EDR Contact: 11/09/2022
Number of Days to Update: 74	Next Scheduled EDR Contact: 02/27/2023
	Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 10/27/2022	
Date Data Arrived at EDR: 11/01/2022	
Date Made Active in Reports: 11/15/2022	
Number of Days to Update: 14	

Source: Environmental Protection Agency Telephone: 703-603-8787 Last EDR Contact: 01/03/2023 Next Scheduled EDR Contact: 04/10/2023 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 36 Source: American Journal of Public Health Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016	Source: EPA
Date Data Arrived at EDR: 10/26/2016	Telephone: 202-564-2496
Date Made Active in Reports: 02/03/2017	Last EDR Contact: 09/26/2017
Number of Days to Update: 100	Next Scheduled EDR Contact: 01/08/2018
	Data Release Frequency: Annually

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

> Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100

Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

MINES VIOLATIONS: MSHA Violation Assessment Data

Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.

Date of Government Version: 11/29/2022	Source: DOL, Mine Safety & Health Admi
Date Data Arrived at EDR: 11/30/2022	Telephone: 202-693-9424
Date Made Active in Reports: 12/22/2022	Last EDR Contact: 01/03/2023
Number of Days to Update: 22	Next Scheduled EDR Contact: 03/13/2023
	Data Release Frequency: Quarterly

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 08/03/2022	Source: Department of Labor, Mine Safety and Health Administration
Date Data Arrived at EDR: 08/17/2022	Telephone: 303-231-5959
Date Made Active in Reports: 08/31/2022	Last EDR Contact: 11/17/2022
Number of Days to Update: 14	Next Scheduled EDR Contact: 03/06/2023
	Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 05/06/2020	Source: USGS
Date Data Arrived at EDR: 05/27/2020	Telephone: 703-648-7709
Date Made Active in Reports: 08/13/2020	Last EDR Contact: 11/21/2022
Number of Days to Update: 78	Next Scheduled EDR Contact: 03/06/2023
	Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011 Number of Days to Update: 97 Source: USGS Telephone: 703-648-7709 Last EDR Contact: 11/21/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 09/13/2022 Date Data Arrived at EDR: 09/14/2022 Date Made Active in Reports: 12/05/2022 Number of Days to Update: 82 Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 12/13/2022 Next Scheduled EDR Contact: 03/20/2023 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 08/03/2022 Date Data Arrived at EDR: 08/25/2022 Date Made Active in Reports: 10/24/2022 Number of Days to Update: 60 Source: EPA Telephone: (617) 918-1111 Last EDR Contact: 11/29/2022 Next Scheduled EDR Contact: 03/13/2023 Data Release Frequency: Quarterly

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 09/25/2022 Date Data Arrived at EDR: 09/30/2022 Date Made Active in Reports: 12/22/2022 Number of Days to Update: 83 Source: Environmental Protection Agency Telephone: 202-564-2280 Last EDR Contact: 01/04/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/06/2021 Date Data Arrived at EDR: 05/21/2021 Date Made Active in Reports: 08/11/2021 Number of Days to Update: 82 Source: Environmental Protection Agency Telephone: 202-564-0527 Last EDR Contact: 11/15/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 11/09/2021 Date Data Arrived at EDR: 10/20/2022 Date Made Active in Reports: 01/10/2023 Number of Days to Update: 82

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 01/09/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 08/11/2022 Date Data Arrived at EDR: 08/11/2022 Date Made Active in Reports: 09/30/2022 Number of Days to Update: 50

Source: EPA Telephone: 800-385-6164 Last EDR Contact: 11/10/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Quarterly

PFAS NPL: Superfund Sites with PFAS Detections Information

EPA's Office of Land and Emergency Management and EPA Regional Offices maintain data describing what is known about site investigations, contamination, and remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) where PFAS is present in the environment.

Date of Government Version: 02/23/2022 Date Data Arrived at EDR: 07/08/2022 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 123

Source: Environmental Protection Agency Telephone: 703-603-8895 Last EDR Contact: 01/10/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

PFAS FEDERAL SITES: Federal Sites PFAS Information

Several federal entities, such as the federal Superfund program, Department of Defense, National Aeronautics and Space Administration, Department of Transportation, and Department of Energy provided information for sites with known or suspected detections at federal facilities.

Date of Government Version: 02/23/2022 Date Data Arrived at EDR: 03/31/2022 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 222

Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 01/05/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

PFAS TSCA: PFAS Manufacture and Imports Information

D

EPA issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. EPA publishes non-confidential business information (non-CBI) and includes descriptive information about each site, corporate parent, production volume, other manufacturing information, and processing and use information.

Date of Government Version: 01/03/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/31/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 222	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Varies

PFAS RCRA MANIFEST: PFAS Transfers Identified In the RCRA Database Listing

To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: PFAS, PFOA, PFOS, PERFL, AFFF, GENX, GEN-X (plus the VT waste codes). These keywords were searched for in the following text fields: Manifest handling instructions (MANIFEST_HANDLING_INSTR), Non-hazardous waste description (NON_HAZ_WASTE_DESCRIPTION), DOT printed information (DOT_PRINTED_INFORMATION), Waste line handling instructions (WASTE_LINE_HANDLING_INSTR), Waste residue comments (WASTE_RESIDUE_COMMENTS).

Date of Government Version: 01/03/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/31/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 222	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Varies

TC7228749.1s Page GR-21

PFAS ATSDR: PFAS Contamination Site Location Listing

PFAS contamination site locations from the Department of Health & Human Services, Center for Disease Control & Prevention. ATSDR is involved at a number of PFAS-related sites, either directly or through assisting state and federal partners. As of now, most sites are related to drinking water contamination connected with PFAS production facilities or fire training areas where aqueous film-forming firefighting foam (AFFF) was regularly used.

Date of Government Version: 06/24/2020 Date Data Arrived at EDR: 03/17/2021 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 601 Source: Department of Health & Human Services Telephone: 202-741-5770 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Varies

PFAS WQP: Ambient Environmental Sampling for PFAS

The Water Quality Portal (WQP) is a part of a modernized repository storing ambient sampling data for all environmental media and tissue samples. A wide range of federal, state, tribal and local governments, academic and non-governmental organizations and individuals submit project details and sampling results to this public repository. The information is commonly used for research and assessments of environmental quality.

Date of Government Version: 01/03/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/31/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 222	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Varies

PFAS NPDES: Clean Water Act Discharge Monitoring Information

Any discharger of pollutants to waters of the United States from a point source must have a National Pollutant Discharge Elimination System (NPDES) permit. The process for obtaining limits involves the regulated entity (permittee) disclosing releases in a NPDES permit application and the permitting authority (typically the state but sometimes EPA) deciding whether to require monitoring or monitoring with limits.

Date of Government Version: 01/03/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/31/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 222	Next Scheduled EDR Contact: 04/17/2023
· ·	Data Release Frequency: Varies

PFAS ECHO: Facilities in Industries that May Be Handling PFAS Listing

Regulators and the public have expressed interest in knowing which regulated entities may be using PFAS. EPA has developed a dataset from various sources that show which industries may be handling PFAS. Approximately 120,000 facilities subject to federal environmental programs have operated or currently operate in industry sectors with processes that may involve handling and/or release of PFAS.

Date of Government Version: 01/03/2022	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/31/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 222	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Varies

PFAS ECHO FIRE TRAINING: Facilities in Industries that May Be Handling PFAS Listing

A list of fire training sites was added to the Industry Sectors dataset using a keyword search on the permitted facilitys name to identify sites where fire-fighting foam may have been used in training exercises. Additionally, you may view an example spreadsheet of the subset of fire training facility data, as well as the keywords used in selecting or deselecting a facility for the subset. as well as the keywords used in selecting or deselecting a facility for the subset to maximize accuracy in selecting facilities that may use fire-fighting foam in training exercises, however, due to the lack of a required reporting field in the data systems for designating fire training sites, this methodology may not identify all fire training sites or may potentially misidentify them.

Date of Government Version: 08/22/2018 Date Data Arrived at EDR: 03/31/2022 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 222 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 01/05/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

PFAS PART 139 AIRPORT: All Certified Part 139 Airports PFAS Information Listing

Since July 1, 2006, all certified part 139 airports are required to have fire-fighting foam onsite that meet military specifications (MIL-F-24385) (14 CFR 139.317). To date, these military specification fire-fighting foams are fluorinated and have been historically used for training and extinguishing. The 2018 FAA Reauthorization Act has a provision stating that no later than October 2021, FAA shall not require the use of fluorinated AFFF. This provision does not prohibit the use of fluorinated AFFF at Part 139 civilian airports; it only prohibits FAA from mandating its use. The Federal Aviation Administration?s document AC 150/5210-6D - Aircraft Fire Extinguishing Agents provides guidance on Aircraft Fire Extinguishing Agents, which includes Aqueous Film Forming Foam (AFFF).

Date of Government Version: 08/22/2018	Source: Environmental Protection Agency
Date Data Arrived at EDR: 10/26/2022	Telephone: 202-272-0167
Date Made Active in Reports: 11/08/2022	Last EDR Contact: 01/05/2023
Number of Days to Update: 13	Next Scheduled EDR Contact: 04/17/2023
	Data Release Frequency: Varies

AQUEOUS FOAM NRC: Aqueous Foam Related Incidents Listing

The National Response Center (NRC) serves as an emergency call center that fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. The spreadsheets posted to the NRC website contain initial incident data that has not been validated or investigated by a federal/state response agency. Response center calls from 1990 to the most recent complete calendar year where there was indication of Aqueous Film Forming Foam (AFFF) usage are included in this dataset. NRC calls may reference AFFF usage in the ?Material Involved? or ?Incident Description? fields.

Date of Government Version: 02/23/2022	
Date Data Arrived at EDR: 03/31/2022	
Date Made Active in Reports: 11/08/2022	
Number of Days to Update: 222	

Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 01/05/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

PFAS: PFAS Contaminated Sites Listing

Detection of Per- and Polyfluoroalkyl Substances (PFAS) in drinking water.

Date of Government Version: 06/24/2022	Source: Department of Environmental Protection
Date Data Arrived at EDR: 06/28/2022	Telephone: 617-292-6770
Date Made Active in Reports: 09/12/2022	Last EDR Contact: 12/12/2022
Number of Days to Update: 76	Next Scheduled EDR Contact: 04/10/2023
	Data Release Frequency: Varies
S: Permitted Facilities Listing	

AIRS: Permitted Facilities Listing A listing of Air Quality permit applications.

> Date of Government Version: 10/06/2022 Date Data Arrived at EDR: 10/06/2022 Date Made Active in Reports: 12/22/2022 Number of Days to Update: 77

Source: Department of Environmental Protection Telephone: 617-292-5789 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies

ASBESTOS: Asbestos Notification Listing Asbestos sites

> Date of Government Version: 08/23/2022 Date Data Arrived at EDR: 08/24/2022 Date Made Active in Reports: 09/06/2022 Number of Days to Update: 13

Source: Department of Environmental Protection Telephone: 617-292-5982 Last EDR Contact: 11/08/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Varies

DRYCLEANERS: Regulated Drycleaning Facilities

A listing of Department of Environmental Protection regulated drycleaning facilities that use perchloroethylene under the Environmental Results Program.
Date of Government Version: 12/07/2022 Date Data Arrived at EDR: 12/13/2022 Date Made Active in Reports: 01/12/2023 Number of Days to Update: 30	Source: Department of Environmental Protection Telephone: 617-292-5633 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies
ENFORCEMENT: Enforcement Action Cases A listing of enforcement action cases tracked b Waste and Hazardous Waste.	by Department of Environmental Protection programs, including Solid
Date of Government Version: 01/09/2023 Date Data Arrived at EDR: 01/10/2023 Date Made Active in Reports: 01/12/2023 Number of Days to Update: 2	Source: Department of Environmental Quality Telephone: 617-292-5979 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies
Financial Assurance 1: Financial Assurance Inform Information for hazardous waste facilities. Fina to pay for the cost of closure, post-closure care facility is unable or unwilling to pay.	ation Listing ancial assurance is intended to ensure that resources are available e, and corrective measures if the owner or operator of a regulated
Date of Government Version: 12/01/2010 Date Data Arrived at EDR: 12/23/2010 Date Made Active in Reports: 02/03/2011 Number of Days to Update: 42	Source: Department of Environmental Protection Telephone: 617-292-5970 Last EDR Contact: 11/30/2022 Next Scheduled EDR Contact: 03/20/2023 Data Release Frequency: Varies
Financial Assurance 2: Financial Assurance Inform A listing of financial assurance information for ensure that resources are available to pay for if the owner or operator of a regulated facility i	ation Listing underground storage tanks. Financial assurance is intended to the cost of closure, post-closure care, and corrective measures s unable or unwilling to pay.
Date of Government Version: 07/12/2022 Date Data Arrived at EDR: 07/14/2022 Date Made Active in Reports: 09/27/2022 Number of Days to Update: 75	Source: Office of State Fire Marshal Telephone: 978-567-3100 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Varies
Financial Assurance 3: Financial Assurance Inform Information for solid waste facilities. Financial to pay for the cost of closure, post-closure care facility is unable or unwilling to pay	ation listing assurance is intended to ensure that resources are available e, and corrective measures if the owner or operator of a regulated
Date of Government Version: 01/16/2018 Date Data Arrived at EDR: 04/17/2018 Date Made Active in Reports: 06/15/2018 Number of Days to Update: 59	Source: Department of Environmental Protection Telephone: 617-292-5970 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies
GWDP: Ground Water Discharge Permits The Ground Water Discharge Permits datalay point dataset containing approximate locations	er (formerly known as Groundwater Discharge Points) is a statewide s of permitted discharges to groundwater.
Date of Government Version: 12/29/2021 Date Data Arrived at EDR: 01/25/2022 Date Made Active in Reports: 04/18/2022 Number of Days to Update: 83	Source: MassGIS Telephone: 617-556-1150 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Varies

HW GEN: List of Massachusetts Hazardous Waste Generators

Permanent generator identification numbers for all Massachusetts generators of hazardous waste and waste oil that have registered with or notified MassDEP of their hazardous waste activities.

	Date of Government Version: 09/15/2022 Date Data Arrived at EDR: 09/20/2022 Date Made Active in Reports: 12/07/2022 Number of Days to Update: 78	Source: Department of Environmental Protection Telephone: 617-292-5500 Last EDR Contact: 12/14/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Semi-Annually
MER	CURY: Mercury Product Recyling Drop-Off Loc A listing of locations, collecting and recycling fo system, as well as fish and animals. Mercury ca of mercury vapors. At room temperature, small	ations Listing r mercury-added products. Mercury is toxic to the human nervous an enter the body either through skin absorption or through inhalation beads of mercury will vaporize.
	Date of Government Version: 09/26/2022 Date Data Arrived at EDR: 09/26/2022 Date Made Active in Reports: 12/09/2022 Number of Days to Update: 74	Source: Department of Environmental Protection Telephone: 617-292-5632 Last EDR Contact: 11/23/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Varies
NPD	ES: NPDES Permit Listing Listing of treatment plants in Massachusetts the	at hold permits to discharge to groundwater.
	Date of Government Version: 01/07/2020 Date Data Arrived at EDR: 02/11/2020 Date Made Active in Reports: 04/21/2020 Number of Days to Update: 70	Source: Department of Environmental Protection Telephone: 508-767-2781 Last EDR Contact: 11/10/2022 Next Scheduled EDR Contact: 02/20/2023 Data Release Frequency: Varies
TIER	2: Tier 2 Information Listing A listing of facilities which store or manufacture	hazardous materials and submit a chemical inventory report
	Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 07/19/2021 Date Made Active in Reports: 08/17/2021 Number of Days to Update: 29	Source: Massachusetts Emergency Management Agency Telephone: 508-820-2019 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Annually
TSD:	: TSD Facility List of Licensed Hazardous Waste Treatment, §	Storage Disposal Facilities (TSDFs) in Massachusetts.
	Date of Government Version: 09/15/2022 Date Data Arrived at EDR: 09/20/2022 Date Made Active in Reports: 12/07/2022 Number of Days to Update: 78	Source: Department of Environmental Protection Telephone: 617-292-5580 Last EDR Contact: 12/14/2022 Next Scheduled EDR Contact: 04/03/2023 Data Release Frequency: Varies
UIC:	Underground Injection Control Listing A list of UIC registration data and their locations	5
	Date of Government Version: 03/10/2022 Date Data Arrived at EDR: 03/15/2022 Date Made Active in Reports: 06/10/2022 Number of Days to Update: 87	Source: Department of Environmental Protection Telephone: 617-566-1172 Last EDR Contact: 11/01/2022 Next Scheduled EDR Contact: 02/20/2023 Data Release Frequency: Varies

PCS: Permit Compliance System

PCS is a computerized management information system that contains data on National Pollutant Discharge Elimination System (NPDES) permit holding facilities. PCS tracks the permit, compliance, and enforcement status of NPDES facilities.

Date of Government Version: 07/14/2011 Date Data Arrived at EDR: 08/05/2011 Date Made Active in Reports: 09/29/2011 Number of Days to Update: 55	Source: EPA, Office of Water Telephone: 202-564-2496 Last EDR Contact: 12/28/2022 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Semi-Annually
PCS INACTIVE: Listing of Inactive PCS Permits An inactive permit is a facility that has shut dow	n or is no longer discharging.
Date of Government Version: 11/05/2014 Date Data Arrived at EDR: 01/06/2015 Date Made Active in Reports: 05/06/2015 Number of Days to Update: 120	Source: EPA Telephone: 202-564-2496 Last EDR Contact: 12/28/2022 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Semi-Annually
MINES MRDS: Mineral Resources Data System Mineral Resources Data System	
Date of Government Version: 04/06/2018 Date Data Arrived at EDR: 10/21/2019 Date Made Active in Reports: 10/24/2019 Number of Days to Update: 3	Source: USGS Telephone: 703-648-6533 Last EDR Contact: 11/22/2022 Next Scheduled EDR Contact: 03/06/2023 Data Release Frequency: Varies
PCS ENF: Enforcement data No description is available for this data	
Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 02/05/2015 Date Made Active in Reports: 03/06/2015 Number of Days to Update: 29	Source: EPA Telephone: 202-564-2497 Last EDR Contact: 12/28/2022 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 08/08/2022 Date Data Arrived at EDR: 08/08/2022 Date Made Active in Reports: 10/21/2022 Number of Days to Update: 74	Source: Department of Energy & Environmental Protection Telephone: 860-424-3375 Last EDR Contact: 11/16/2022 Next Scheduled EDR Contact: 02/20/2023 Data Release Frequency: No Update Planned
NJ MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 04/10/2019 Date Made Active in Reports: 05/16/2019 Number of Days to Update: 36	Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 12/28/2022 Next Scheduled EDR Contact: 04/17/2023 Data Release Frequency: Annually
NY MANIFEST: Facility and Manifest Data Manifest is a document that lists and tracks ha facility.	azardous waste from the generator through transporters to a TSD
Date of Government Version: 01/01/2019 Date Data Arrived at EDR: 10/29/2021 Date Made Active in Reports: 01/19/2022 Number of Days to Update: 82	Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 10/28/2022 Next Scheduled EDR Contact: 02/06/2023 Data Release Frequency: Quarterly
PA MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/19/2019 Date Made Active in Reports: 09/10/2019 Number of Days to Update: 53	Source: Department of Environmental Protection Telephone: 717-783-8990 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Annually
RI MANIFEST: Manifest information Hazardous waste manifest information	
Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 11/30/2021 Date Made Active in Reports: 02/18/2022 Number of Days to Update: 80	Source: Department of Environmental Management Telephone: 401-222-2797 Last EDR Contact: 12/20/2022 Next Scheduled EDR Contact: 02/27/2023 Data Release Frequency: Annually
VT MANIFEST: Hazardous Waste Manifest Data Hazardous waste manifest information.	
Date of Government Version: 10/28/2019 Date Data Arrived at EDR: 10/29/2019 Date Made Active in Reports: 01/09/2020 Number of Days to Update: 72	Source: Department of Environmental Conservation Telephone: 802-241-3443 Last EDR Contact: 01/06/2023 Next Scheduled EDR Contact: 04/24/2023 Data Release Frequency: Annually
WI MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 09/03/2019 Number of Days to Update: 76	Source: Department of Natural Resources Telephone: N/A Last EDR Contact: 12/01/2022 Next Scheduled EDR Contact: 03/20/2023 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: Endeavor Business Media

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are

comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: MassDEP Telephone: 617-292-5907

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

SAND PIT ROAD 2 SAND PIT RD NORTH TRURO, MA 02652

TARGET PROPERTY COORDINATES

Latitude (North):	42.023493 - 42 1' 24.57"
Longitude (West):	70.079727 - 70 4' 47.02"
Universal Tranverse Mercator:	Zone 19
UTM X (Meters):	410609.4
UTM Y (Meters):	4652735.0
Elevation:	46 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:	11721272 NORTH TRURO, MA
Version Date:	2018

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General WNW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
25001C0139J	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
25001C0136J 25001C0137J 25001C0138J 25001C0143J	FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data
NATIONAL WETLAND INVENTORY	
NIMU Qued at Target Drag arts	NWI Electronic
	VES refer to the Overview Map and Detail Map
	TES - Telef to the Overview Map and Detail Map

LOCATION

FROM TP

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Cenozoic	Category:	Stratifed Sequence
System:	Quaternary		
Series:	Pleistocene		
Code:	Qp (decoded above as Era, System & Se	eries)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 7228749.1s

SITE NAME: Sand Pit Road	CLIENT: Horsley Witten Group, Inc.
ADDRESS: 2 Sand Pit Rd	CONTACT: Caroline Armstrong
North Truro MA 02652	INQUIRY #: 7228749.1s
LAT/LONG: 42.023493 / 70.079727	DATE: January 19, 2023 10:32 am
	Copyright © 2023 EDR, Inc. © 2015 TomTom Rel. 2015.

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1Soil Component Name:PitsSoil Surface Texture:
Hydrologic Group:Not reportedSoil Drainage Class:
Hydric Status: UnknownNot reportedCorrosion Potential - Uncoated Steel:Not ReportedDepth to Bedrock Min:> 0 inchesDepth to Watertable Min:> 0 inchesNo Layer Information available.Yet Status

Soil Map ID: 2	
Soil Component Name:	Carver
Soil Surface Texture:	coarse sand
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
Soil Drainage Class:	Excessively drained
Hydric Status: Partially hydric	
Corrosion Potential - Uncoated Steel:	Low
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

Soil Layer Information							
Boundary		Boundary		Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
2	7 inches	16 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
3	16 inches	64 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6

Soil Map ID: 3	
Soil Component Name:	Carver
Soil Surface Texture:	coarse sand
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
Soil Drainage Class:	Excessively drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	Low
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

Soil Layer Information							
Boundary Classification Saturated							
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
2	7 inches	16 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
3	16 inches	64 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6

Soil Map ID:

Soil Component Name:	Freetown
Soil Surface Texture:	muck
Hydrologic Group:	Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class:	Very poorly drained
Hydric Status: All hydric	
Corrosion Potential - Uncoated Steel:	High
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

	Soil Layer Information							
Boundary Classification Saturated bydraulic								
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)	
1	0 inches	5 inches	muck	Not reported	Not reported	Max: 42.34 Min: 4.23	Max: Min:	
2	5 inches	64 inches	muck	Not reported	Not reported	Max: 42.34 Min: 4.23	Max: Min:	

Soil Map ID: 5	
Soil Component Name:	Carver
Soil Surface Texture:	coarse sand
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
Soil Drainage Class:	Excessively drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	Low
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

Soil Layer Information							
	Bou	indary		Classification		Saturated bydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
2	7 inches	16 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
3	16 inches	64 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6

Soil Map ID: 6	
Soil Component Name:	Carver
Soil Surface Texture:	coarse sand
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
Soil Drainage Class:	Excessively drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	Low
Depth to Bedrock Min:	> 0 inches
Depth to Watertable Min:	> 0 inches

Soil Layer Information							
Boundary Classification						Saturated	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
2	7 inches	16 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6
3	16 inches	64 inches	coarse sand	Not reported	Not reported	Max: 705 Min: 141.14	Max: 5.5 Min: 3.6

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS	1.000
Federal FRDS PWS	Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
A1	USGS40000464026	0 - 1/8 Mile WNW
A2	USGS40000464014	0 - 1/8 Mile WSW
A3	USGS40000464032	0 - 1/8 Mile WNW
9	USGS40000464083	1/4 - 1/2 Mile Nort
10	USGS40000464082	1/4 - 1/2 Mile NNE
11	USGS40000464005	1/4 - 1/2 Mile ESE
12	USGS40000464122	1/4 - 1/2 Mile NNE
13	USGS40000464123	1/4 - 1/2 Mile NNV
14	USGS40000463934	1/4 - 1/2 Mile Sout
C15	USGS40000464124	1/4 - 1/2 Mile NNE
16	USGS40000463942	1/4 - 1/2 Mile SSV
C17	USGS40000464130	1/4 - 1/2 Mile NNE
C18	USGS40000464129	1/4 - 1/2 Mile NNE
19	USGS40000464162	1/4 - 1/2 Mile Nort
D21	USGS40000464128	1/2 - 1 Mile NE
D22	USGS40000464138	1/2 - 1 Mile NNE
23	USGS40000464114	1/2 - 1 Mile NW
D24	USGS40000464139	1/2 - 1 Mile NE
D25	USGS40000464140	1/2 - 1 Mile NE
E26	USGS40000463918	1/2 - 1 Mile SSE
27	USGS40000464151	1/2 - 1 Mile NE
28	USGS40000463975	1/2 - 1 Mile ESE
30	USGS40000464208	1/2 - 1 Mile NNW
31	USGS40000464202	1/2 - 1 Mile NNW
32	USGS40000463863	1/2 - 1 Mile South
33	USGS40000464163	1/2 - 1 Mile NVV
34	USGS40000464235	1/2 - 1 Mile NNVV
30	USGS40000464216	1/2 - 1 Mile NNVV
37	USGS40000463981	1/2 - 1 Mile ESE
F30 C20	USGS40000464022	1/2 - 1 Mile East
G39	USGS40000464269	1/2 - 1 Mile North
G40 42		1/2 - 1 Mile NOIth
42 11		1/2 - I IVIILE INVV
 15	USGS40000403037	1/2 - 1 Mile South
40	1186840000404215	1/2 = 1 Mile NE
4 0	000040000400000	

th Е Е N Ith E N E th

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
49	USGS40000464319	1/2 - 1 Mile North
51	USGS40000463806	1/2 - 1 Mile South

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
52	MA4300001	1/2 - 1 Mile NE

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
4	MA900000001704	1/8 - 1/4 Mile East
5	MA900000000202	1/8 - 1/4 Mile NE
B6	MA900000002077	1/8 - 1/4 Mile NNE
B7	MA90000000884	1/8 - 1/4 Mile NNE
B8	MA900000001085	1/8 - 1/4 Mile NNE
C20	MA900000001814	1/4 - 1/2 Mile NNE
E29	MA900000003145	1/2 - 1 Mile SE
35	MA900000002839	1/2 - 1 Mile North
41	MA900000002567	1/2 - 1 Mile East
F43	MA900000002566	1/2 - 1 Mile East
H46	MA900000001955	1/2 - 1 Mile SSE
H47	MA900000003627	1/2 - 1 Mile SSE
50	MA900000001405	1/2 - 1 Mile NNW

Map ID Direction Distance					
Elevation			[Database	EDR ID Number
A1 WNW 0 - 1/8 Mile Lower			F	FED USGS	USGS40000464026
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachuset MA-TSW 189 Not Reported Not Reported Sand and gravel aqu Not Reported 19661024 ft	ts Water Sciend	ce Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un I regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 0109 Not F ts: Not F 55 60	0002 Reported Reported Reported
Ground water levels,Number o Feet below surface: Note:	f Measurements: 18.50 Not Reported	1	Level reading date: Feet to sea level:	1966 Not F	-10-24 Reported
A2 WSW 0 - 1/8 Mile Lower			ſ	ED USGS	USGS40000464014
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachuset MA-TSW 188 Not Reported Not Reported Sand and gravel aqu Not Reported 19661020 ft	ts Water Sciend	ce Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 0109 Not F ts: Not F 44 59	0002 Reported Reported Reported
Ground water levels,Number o Feet below surface: Note:	f Measurements: 9.80 Not Reported	1	Level reading date: Feet to sea level:	1966 Not F	-10-20 Reported
A3 WNW 0 - 1/8 Mile Lower			I	ED USGS	USGS40000464032
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date:	USGS-MA USGS Massachuset MA-TSW 157 Not Reported Not Reported Sand and gravel aqu Not Reported 19661026	ts Water Sciend	ce Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un regions) Aquifer Type: Well Depth:	Well 0109 Not F ts: Not F Not F 50	0002 Reported Reported Reported

Well Depth Units: Well Hole Depth Units:	ft ft		Well Hole Depth:	60
Ground water levels,Number o Feet below surface: Note:	f Measurements: 0.63 Not Reported	48	Level reading date: Feet to sea level:	1977-04-11 Not Reported
Level reading date:	1976-12-06		Feet below surface:	1.32
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-10-29		Feet below surface:	1.19
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-10-04		Feet below surface:	1.25
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-08-31		Feet below surface:	1.30
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-08-03		Feet below surface:	1.23
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-07-02		Feet below surface:	1.04
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-05-24		Feet below surface:	0.35
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-04-28		Feet below surface:	0.40
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-04-05		Feet below surface:	0.24
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-03-01		Feet below surface:	0.08
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1976-01-29		Feet below surface:	0.04
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-12-29		Feet below surface:	0.40
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-11-26		Feet below surface:	0.71
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-09-29		Feet below surface:	1.02
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-08-19		Feet below surface:	1.08
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-07-22		Feet below surface:	1.07
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-06-25		Feet below surface:	0.83
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1975-05-19		Feet below surface:	0.65
Feet to sea level:	Not Reported		Note:	Not Reported

Level reading date:	1975-04-24	Feet below surface:	0.49
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-03-24	Feet below surface:	0.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-02-19	Feet below surface:	0.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-01-17	Feet below surface:	0.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-12-17	Feet below surface:	0.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-11-23	Feet below surface:	1.06
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-10-22	Feet below surface:	1.16
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-09-16	Feet below surface:	1.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-08-14	Feet below surface:	1.14
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-07-10	Feet below surface:	0.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-05-15	Feet below surface:	0.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-07	Feet below surface:	0.37
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-18	Feet below surface:	0.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-19	Feet below surface:	0.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-28	Feet below surface:	0.33
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	0.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	0.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-17	Feet below surface:	0.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-12	Feet below surface:	0.73
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	0.77
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-17	Feet below surface:	0.53
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1973-06-13	Feet below surface:	0.26
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	0.01
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	0.33
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	0.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	0.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-10	Feet below surface:	0.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	0.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-31	Feet below surface:	0.33
Feet to sea level:	Not Reported	Note:	Not Reported

4 East 1/8 - 1/4 Mile Higher

PWS ID: Type: SubBasin:

Basemap: Feature Type: Primary Location Source: Tertiary Location Source:

Source ID: Source Name: Source Status: Source Availability: 4300020 Transient Non-Community CAPE COD

NA GW SV Not Reported

4300020-01G WELL # 1 I INACT

MA WELLS MA900000001704

Not Reported

Not Reported

100

GP_6

PILGRIM SPRING MOTEL

Site Name: Facility Name:

Accuracy Estimate (ft): Location Method: Secondary Location Source:

PWS Name: PWS Status: PWS Class: PILGRIM SPRING MOTEL I NC

MA90000000202

5 NE 1/8 - 1/4 Mile Higher

> PWS ID: Type: SubBasin:

Basemap: Feature Type: Primary Location Source: Tertiary Location Source: 4300004 Transient Non-Community CAPE COD

NA GW SV Not Reported Site Name: Facility Name:

CAPE VIEW MOTEL Not Reported

Accuracy Estimate (ft): Location Method: Secondary Location Source: 100 GP_6 Not Reported

MA WELLS

Source ID: Source Name: Source Status: Source Availability:	4300004-01G WELL 1 A ACTIVE	PWS Name: PWS Status: PWS Class:	CAPE VIEW MOTEL A NC
B6 NNE 1/8 - 1/4 Mile Lower		MA W	/ELLS MA9000000002077
PWS ID: Type: Facility Name:	4300040 Non-Transient Non-Community Not Reported	Site Name: SubBasin:	STONES THROW CONDOS CAPE COD
Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	DOQ GW SV Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	16 GP_2 AP_DOQ
Source ID: Source Name: Source Status: Source Availability:	4300040-03G REPLACEMENT WELL #2 A ACTIVE	PWS Name: PWS Status: PWS Class:	STONES THROW CONDOS A NTNC
B7 NNE 1/8 - 1/4 Mile Higher		MA W	/ELLS MA900000000884
PWS ID: Type: Facility Name:	4300040 Non-Transient Non-Community Not Reported	Site Name: SubBasin:	STONES THROW CONDOS CAPE COD
Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	DVB GW KNOW Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	500 OTH Not Reported
Source ID: Source Name: Source Status: Source Availability:	4300040-02G WELL #2 A ACTIVE	PWS Name: PWS Status: PWS Class:	STONES THROW CONDOS A NTNC

B8 NNE 1/8 - 1/4 Mile Higher			MA WELLS	MA9000000001085
PWS ID:	4300040	Site Name:	STON	IES THROW CONDOS
Type:	Non-Transient Non-Community			
Facility Name:	Not Reported	SubBasin:	CAPE	COD

Basemap:NAFeature Type:GWPrimary Location Source:SVTertiary Location Source:Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	16 GP_2 Not Reported
Source ID:4300040-01GSource Name:WELL #1Source Status:ISource Availability:INACT	PWS Name: PWS Status: PWS Class:	STONES THROW CONDOS A NTNC
9 North 1/4 - 1/2 Mile Lower	FED	USGS USGS40000464083
Organization ID: USGS-MA		
Organization Name: USGS Massachusetts W	/ater Science Center	
Monitor Location: MA-TSW 156	Туре:	Well
Description: Not Reported	HUC:	01090002
Drainage Area: Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area: Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer: Sand and gravel aquifers	s (glaciated regions)	
Formation Type: Not Reported	Aquifer Type:	Not Reported
Construction Date: 19720519	Well Depth:	9.2
Well Depth Units: ft	Well Hole Depth:	Not Reported
Well Hole Depth Units: Not Reported		
Ground water levels, Number of Measurements:	5 Level reading date:	1973-10-18
Feet below surface: 2.47	Feet to sea level:	Not Reported
Note: Not Reported		
Level reading date: 1973-05-14	Feet below surface:	1.53
Feet to sea level: Not Reported	Note:	Not Reported
Level reading date: 1972-11-10	Feet below surface:	2.02
Feet to sea level: Not Reported	Note:	Not Reported
Level reading date: 1972-06-05	Feet below surface:	1.33
Feet to sea level: Not Reported	Note:	Not Reported
Level reading date: 1972-05-19	Feet below surface:	1.81
Feet to sea level: Not Reported	Note:	Not Reported

10 NNE 1/4 - 1/2 Mile Higher

FED USGS USGS40000464082

Organization ID: USGS-MA Organization Name: USGS Massachusetts Water Science Center Monitor Location: MA-TSW 239 Well Type: Not Reported HUC: 01090002 Description: Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Sand and gravel aquifers (glaciated regions) Aquifer Type: Formation Type: Not Reported Not Reported 19790330 Well Depth: Construction Date: 130

Well Depth Units: Well Hole Depth Units:	ft ft	Well Hole Depth:	150
Ground water levels,Number	r of Measurements: 1	Level reading date:	1979-03-30
Feet below surface: Note:	45.50 Not Reported	Feet to sea level:	Not Reported
11 ESE 1/4 - 1/2 Mile Higher		FED	JSGS USGS40000464005
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Water S	Science Center	
Monitor Location:	MA-TSW 288	Type:	Well
Description:	CCC OBS WELL P2	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (glad	ciated regions)	-
Formation Type:	Stratified Deposits, Undifferen	tiated	
Aquifer Type:	Unconfined single aquifer	Construction Date:	20011212
Well Depth:	129.5	Well Depth Units:	ft
Well Hole Depth:	129.5	Well Hole Depth Units:	ft
12 NNE 1/4 - 1/2 Mile		FED	JSGS USGS40000464122
Lower			
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Water S		
Monitor Location:		Science Center	
	MA-TSW 155	Type:	Well
Description:	MA-TSW 155 Not Reported	Science Center Type: HUC:	Well 01090002
Description: Drainage Area:	MA-TSW 155 Not Reported Not Reported	Science Center Type: HUC: Drainage Area Units:	Well 01090002 Not Reported
Description: Drainage Area: Contrib Drainage Area:	MA-TSW 155 Not Reported Not Reported Not Reported	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts:	Well 01090002 Not Reported Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer:	MA-TSW 155 Not Reported Not Reported Not Reported Sand and gravel aquifers (glad	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions)	Well 01090002 Not Reported Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type:	MA-TSW 155 Not Reported Not Reported Not Reported Sand and gravel aquifers (glad Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type:	Well 01090002 Not Reported Not Reported Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date:	MA-TSW 155 Not Reported Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth:	Well 01090002 Not Reported Not Reported Not Reported 14.1
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units:	MA-TSW 155 Not Reported Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 01090002 Not Reported Not Reported 14.1 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Ciated regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 01090002 Not Reported Not Reported 14.1 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Ground water levels,Numbe	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported ************************************	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported r of Measurements: 7 10.50 Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glac Not Reported 19720526 ft Not Reported r of Measurements: 7 10.50 Not Reported 1974-09-04	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported r of Measurements: 7 10.50 Not Reported 1974-09-04 Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glac Not Reported 19720526 ft Not Reported r of Measurements: 7 10.50 Not Reported 1974-09-04 Not Reported 1973-10-18	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Eeet below surface:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date: Feet to sea level:	MA-TSW 155 Not Reported Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported 1974-09-04 Not Reported 1973-10-18 Not Reported	Cience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Feet below surface: Note:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date: Feet to sea level: Level reading date:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported r of Measurements: 7 10.50 Not Reported 1974-09-04 Not Reported 1973-10-18 Not Reported 1973-05-14	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Feet below surface: Note: Eeet below surface:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63 Not Reported 9.60
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date: Feet to sea level: Level reading date: Feet to sea level:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported 19720526 ft Not Reported 1974-09-04 Not Reported 1973-10-18 Not Reported 1973-05-14 Not Reported	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Contrib Drainage Area Unts: Contrib Drainage Area Unts: Contrib Drainage Area Unts: Vell Depth: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63 Not Reported 9.60 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date: Feet to sea level: Level reading date: Feet to sea level: Level reading date: Feet to sea level:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported 19720526 ft Not Reported 1974-09-04 Not Reported 1973-10-18 Not Reported 1973-05-14 Not Reported 1973-05-14 Not Reported	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ciated regions) Aquifer Type: Well Depth: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63 Not Reported 9.60 Not Reported
Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Well Hole Depth Units: Ground water levels,Number Feet below surface: Note: Level reading date: Feet to sea level: Level reading date: Feet to sea level:	MA-TSW 155 Not Reported Not Reported Sand and gravel aquifers (glad Not Reported 19720526 ft Not Reported 1972-09-04 Not Reported 1973-10-18 Not Reported 1973-05-14 Not Reported 1972-11-11 Not Reported	Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Ciated regions) Aquifer Type: Well Depth: Well Hole Depth: Level reading date: Feet to sea level: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note: Feet below surface: Note:	Well 01090002 Not Reported Not Reported 14.1 Not Reported 1975-05-21 Not Reported 11.21 Not Reported 10.63 Not Reported 9.60 Not Reported 10.24

Level reading date: Feet to sea level:	1972-06-05 Not Reported	Feet below surface: Note:	10.03 Not Reported
Level reading date:	1972-05-26	Feet below surface:	10.03
Feet to sea level:	Not Reported	Note:	Not Reported
13 NNW		FE	D USGS USGS40000464123
1/4 - 1/2 Mile Lower			
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Wat	er Science Center	
Monitor Location:	MA-TSW 145	Type:	Well
Description:	Not Reported	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (alaciated regions)	Not Reported
Formation Type:	Not Reported		Not Reported
Construction Date:	10720531	Well Depth:	12.2
Well Dopth Units:	ft	Well Hele Depth:	Not Poportod
Well Hole Depth Units:	Not Reported		Norreported
Ground water levels,Numbe	er of Measurements: 2	6 Level reading date:	2000-12-19
Feet below surface:	1.70	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	2000-11-29	Feet below surface:	1.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-09-25	Feet below surface:	1.94
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-08-30	Feet below surface:	1.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-07-31	Feet below surface:	1.59
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-06-28	Feet below surface:	1.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-05-26	Feet below surface:	1.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-04-26	Feet below surface:	0.97
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-03-29	Feet below surface:	1.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-03-09	Feet below surface:	1.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2000-01-24	Feet below surface:	2.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-12-22	Feet below surface:	2.07
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1999-11-23	Feet below surface:	2.10
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-10-21	Feet below surface:	2.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-09-23	Feet below surface:	2.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-08-24	Feet below surface:	2.22
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-07-21	Feet below surface:	2.16
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-06-21	Feet below surface:	1.92
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-05-21	Feet below surface:	1.48
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-04-13	Feet below surface:	1.43
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1999-03-25	Feet below surface:	1.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-18	Feet below surface:	1.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-14	Feet below surface:	0.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-11	Feet below surface:	1.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	1.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-31	Feet below surface:	1.21
Feet to sea level:	Not Reported	Note:	Not Reported

14 South 1/4 - 1/2 Mile Higher

Organization ID: USGS-MA Organization Name: USGS Massachusetts Water Science Center Monitor Location: MA-TSW 160 Well Type: HUC: 01090002 Description: Not Reported Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Sand and gravel aquifers (glaciated regions) Aquifer: Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: 197205 Well Depth: 104 Well Depth Units: Well Hole Depth: Not Reported ft Well Hole Depth Units: Not Reported

Ground water levels, Number of Measurements:

1

Level reading date:

1972-05-15

USGS40000463934

FED USGS

Feet below surface: Note:	95.99 Not Reported	Feet to sea level:	Not F	Reported
C15 NNE 1/4 - 1/2 Mile Lower		FE	ED USGS	USGS40000464124
Organization ID:	USGS-MA			
Organization Name:	USGS Massachusetts Water Scien	nce Center		
Monitor Location:	MA-TSW 270	Type:	Well	
Description:	SO. HOLLOW ZOT MONITOR WE	ELL NR PSW SH-1	N	
HUC: Drainago Aroa Unite:	01090002 Not Reported	Drainage Area:	NOT F	Reported
Contrib Drainage Area Unts:	Not Reported	Contrib Drainage Area.	NUL	Veponeu
Aquifer:	Sand and gravel aquifers (glaciate	d regions)		
Formation Type:	Stratified Deposits, Undifferentiate	d		
Aquifer Type:	Unconfined single aquifer	Construction Date:	1999	0101
Well Depth: Well Hole Depth:	199	Well Depth Units:	ft ft	
16 SSW 1/4 - 1/2 Mile Higher		FE	D USGS	USGS40000463942
Organization ID:				
Organization Name:	USGS Massachusetts Water Scien	nce Center		
Monitor Location:	MA-TSW 159	Туре:	Well	
Description:	Not Reported	HUC:	0109	0002
Drainage Area:	Not Reported	Drainage Area Units:	Not F	Reported
Contrib Drainage Area:	Not Reported Sand and gravel aquifers (glaciate	Contrib Drainage Area Unts	: NOT F	Reported
Formation Type:	Not Reported	Aquifer Type:	Not F	Reported
Construction Date:	197205	Well Depth:	91.7	
Well Depth Units:	ft	Well Hole Depth:	Not F	Reported
Well Hole Depth Units:	Not Reported			
Ground water levels Number of	f Measurements: 1	Level reading date:	1972	-06-01
Feet below surface:	80.32	Feet to sea level:	Not F	Reported
Note:	Not Reported			
C17 NNE		FE	D USGS	USGS40000464130
1/4 - 1/2 Mile Lower				
Organization ID:	USGS-MA			
Organization Name:	USGS Massachusetts Water Scient	nce Center		
Monitor Location:	MA-TSW 154	Туре:	Well	
Description:	Not Reported	HUC: Drainaga Area Unita	0109	10002 Reported
Drainage Area:	Not Reported	Drainage Area Units:	NOT F	reported
Aquifer:	Sand and gravel aquifers (glaciate	ed regions)	. NULL	
Formation Type:	Not Reported	Aquifer Type:	Not F	Reported
Construction Date:	1953	Well Depth:	37.9	
Well Depth Units:	ft	Well Hole Depth:	Not F	Reported
	it.		NULF	vehouen

Well Hole Depth Units:	Not Reported			
Ground water levels,Number of N Feet below surface: Note:	leasurements: 11.05 Not Reported	45	Level reading date: Feet to sea level:	1977-04-11 Not Reported
Level reading date: Feet to sea level:	1977-03-01 Not Reported		Feet below surface: Note:	11.19 Not Reported
Level reading date:	1976-12-06		Feet below surface:	9.93
Note:	A nearby site that taps	the same aqui	fer had been pumped recently.	
Level reading date:	1976-10-29		Feet below surface:	16.30
Feet to sea level: Note:	Not Reported A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1976-10-04		Feet below surface:	12.28
Feet to sea level: Note:	Not Reported A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1976-08-31		Feet below surface:	12.75
Feet to sea level: Note:	Not Reported A nearby site that taps	the same aqui	fer was being pumped.	
	,		310 100	
Level reading date: Feet to sea level:	1976-08-03 Not Reported		Feet below surface:	12.83
Note:	A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1976-07-02 Not Reported		Feet below surface:	10.65
Note:	A nearby site that taps	the same aqui	fer had been pumped recently.	
Level reading date:	1976-05-24		Feet below surface:	10.70
Note:	A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1976-04-28		Feet below surface:	10.69
Note:	A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1976-04-05		Feet below surface:	8.86
Note:	Not Reported A nearby site that taps	the same aqui	fer had been pumped recently.	
Level reading date:	1976-03-01		Feet below surface:	8.93
Feet to sea level: Note:	Not Reported A nearby site that taps	the same aqui	fer had been pumped recently.	
Level reading date:	1976-01-29		Feet below surface	8 96
Feet to sea level:	Not Reported			0.00
Note:	A nearby site that taps	the same aqui	fer had been pumped recently.	
Level reading date:	1975-12-29		Feet below surface:	11.00
Note:	A nearby site that taps	the same aqui	fer was being pumped.	
Level reading date:	1975-11-26		Feet below surface:	11.38
Feet to sea level:	Not Reported			
Note:	A nearby site that taps	the same aqui	fer was being pumped.	

_evel reading date: ⁻ eet to sea level:	1975-10-22 Not Reported	Feet below surface:	11.59		
Note:	A nearby site that taps the	same aquifer was being pumped.			
Level reading date:	1975-09-29 Not Papartod	Feet below surface:	12.30		
Note:	A nearby site that taps the same aquifer was being pumped.				
_evel reading date:	1975-08-19	Feet below surface:	11.82		
-eet to sea level: Note:	A nearby site that taps the	same aquifer was being pumped.			
_evel reading date:	1975-07-22	Feet below surface:	11.94		
Feet to sea level: Note:	Not Reported A nearby site that taps the	same aquifer was being pumped.			
_evel reading date:	1975-06-25	Feet below surface:	12.47		
eet to sea level:	Not Reported				
Note:	A nearby site that taps the	same aquifer was being pumped.			
Level reading date:	1975-05-19 Not Reported	Feet below surface:	10.78		
Note:	A nearby site that taps the	same aquifer was being pumped.			
_evel reading date:	1975-04-24	Feet below surface:	9.65		
eet to sea level: Note:	Not Reported A nearby site that taps the	same aquifer was being pumped.			
_evel reading date:	1975-03-24	Feet below surface:	9.37		
Feet to sea level:	Not Reported	same aquifer had been numped recently			
NOIE.		same aquirer hau been pumped recently.			
Level reading date:	1975-02-19 Not Reported	Feet below surface:	10.96		
Note:	A nearby site that taps the	same aquifer was being pumped.			
_evel reading date:	1975-01-17	Feet below surface:	11.09		
-eet to sea level: Note:	Not Reported A nearby site that taps the	same aquifer had been pumped recently.			
_evel reading date:	1974-12-17	Feet below surface:	10.82		
Feet to sea level:	Not Reported	same aquifer was being numped			
NOIE.		same aquirer was being pumpeu.			
_evel reading date: Feet to sea level:	1974-11-23 Not Reported	Feet below surface:	11.32		
Note:	A nearby site that taps the	same aquifer was being pumped.			
evel reading date:	1974-10-22	Feet below surface:	9.75		
Feet to sea level: Note:	Not Reported A nearby site that taps the	same aquifer had been pumped recently.			
aval reading data	1074 00 10		14 70		
Feet to sea level:	Not Reported	reet below surface.	11.70		
Note:	A nearby site that taps the	same aquifer had been pumped recently.			
evel reading date:	1974-08-14	Feet below surface:	12.28		
Feet to sea level: Note:	Not Reported A nearby site that taps the	same aquifer was being pumped.			
aval reading date	1074 07 40	Foot boless surfaces	14 50		
Level reading date: Feet to sea level:	Not Reported	Feet Delow Sufface:	11.59		

Note:	A nearby site that taps the same aqui	ifer was being pumped.	
Level reading date: Feet to sea level: Note:	1974-05-15 Not Reported A nearby site that taps the same agui	Feet below surface:	10.39
Level reading date: Feet to sea level:	1974-04-08 Not Reported	Feet below surface:	10.44
Note:	A nearby site that taps the same aqui	ifer was being pumped.	
Level reading date: Feet to sea level: Note:	1974-03-13 Not Reported A pearby site that taps the same agui	Feet below surface:	8.76
Feet to sea level: Note:	1974-02-19 Not Reported A nearby site that taps the same aqui	Feet below surface: ifer had been pumped recently.	8.68
Level reading date: Feet to sea level:	1974-01-28 Not Reported	Feet below surface:	10.34
Note:	A nearby site that taps the same aqui	ifer was being pumped.	
Level reading date: Feet to sea level:	1974-01-02 Not Reported	Feet below surface:	10.49
NOTE:	A hearby site that taps the same aqui	iter was being pumped.	
Level reading date: Feet to sea level: Note:	1973-11-20 Not Reported A nearby site that taps the same aqui	Feet below surface: ifer was being pumped.	10.95
Level reading date: Feet to sea level:	1973-10-18 Not Reported	Feet below surface:	12.22
Note:	A nearby site that taps the same aqui	ifer was being pumped.	
Level reading date: Feet to sea level:	1973-05-14 Not Reported	Feet below surface:	9.75
Note:	A nearby site that taps the same aqui	ifer was being pumped.	
Level reading date: Feet to sea level:	1972-11-11 Not Reported	Feet below surface:	9.48
Note:	A nearby site that taps the same aqui	ifer had been pumped recently.	
Level reading date: Feet to sea level:	1972-06-07 Not Reported	Feet below surface:	10.45
Note:	A nearby site that taps the same aqui	iter was being pumped.	
Level reading date: Feet to sea level:	1972-06-06 Not Reported	Feet below surface:	8.98
Note:	A nearby site that taps the same aqui	iter had been pumped recently.	
Level reading date: Feet to sea level: Note:	1972-06-05 Not Reported A nearby site that taps the same agui	Feet below surface:	9.12
	,		
Level reading date: Feet to sea level: Note:	Not Reported A nearby site that taps the same aqui	Feet below surrace:	8.91

Map ID Direction Distance Elevation			I	Database	EDR ID Number
C18 NNE 1/4 - 1/2 Mile Lower			I	FED USGS	USGS40000464129
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachus MA-TSW 78 Not Reported Not Reported Sand and gravel a Stratified Deposits Unconfined single 60.6 Not Reported	setts Water Scie aquifers (glaciat s, Undifferentiat aquifer	ence Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un ed regions) ed Construction Date: Well Depth Units: Well Hole Depth Units:	Well: 01090 Not R ts: Not R 1953 ⁷ ft Not R	Multiple wells 2002 eported eported 10 eported
Ground water levels,Number of Feet below surface: Note:	Measurements: 21.70 Not Reported	1	Level reading date: Feet to sea level:	1953- Not R	10-01 eported
19 North 1/4 - 1/2 Mile Lower			I	FED USGS	USGS40000464162
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachus MA-TSW 146 Not Reported Not Reported Sand and gravel a Not Reported 19720518 ft Not Reported	setts Water Scie	ence Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un ed regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 01090 Not R ts: Not R 8.9 Not R Not R	0002 eported eported eported
Ground water levels,Number of Feet below surface: Note: Level reading date: Feet to sea level:	Measurements: 5.02 Not Reported 1974-08-13 Not Reported	23	Level reading date: Feet to sea level: Feet below surface: Note:	1975- Not R 5.90 Not R	05-21 eported
Level reading date: Feet to sea level:	1974-07-10 Not Reported 1974-05-15		Feet below surface: Note: Feet below surface:	5.23 Not R 4.74	eported
Feet to sea level: Level reading date: Feet to sea level:	Not Reported 1974-04-07 Not Reported		Note: Feet below surface: Note:	Not R 4.73 Not R	eported
Level reading date: Feet to sea level:	1974-03-13 Not Reported		Feet below surface: Note:	4.56 Not R	eported

Level reading date:	1974-02-21	Feet below surface:	4.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-30	Feet below surface:	4.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	4.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	5.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-17	Feet below surface:	5.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-12	Feet below surface:	5.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	5.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-17	Feet below surface:	4.97
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-13	Feet below surface:	4.64
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	4.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-14	Feet below surface:	4.30
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	3.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	4.54
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	4.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-11	Feet below surface:	4.77
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	4.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-18	Feet below surface:	4.54
Feet to sea level:	Not Reported	Note:	Not Reported

C20 NNE 1/4 - 1/2 Mile Lower

> PWS ID: Type: Facility Name:

4242000 Community Groundwater Well Not Reported Site Name: SubBasin: PAUL D. DALEY WELLFIELD

MA90000001814

CAPE COD

MA WELLS

Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	DOQ PH AP_DOQ Not Reported		Accuracy Estimate (ft): Location Method: Secondary Location Sourc	100 PHO ce: Not F	Reported
Source ID: Source Name: Source Status: Source Availability:	4242000-03G PAUL D. DALEY W A ACTIVE	ELLFIELD	PWS Name: PWS Status: PWS Class:	PRO A COM	VINCETOWN WATER DEPARTMENT
Well Name: Basin:	PAUL D. DALEY W CAPE COD	ELLFIELD	Purveyor: Region:	PRO 4	VINCETOWN WATER DEPARTMENT
D21 NE 1/2 - 1 Mile Lower			F	FED USGS	USGS40000464128
Organization ID: Organization Name: Monitor Location: Description: HUC: Drainage Area Units: Contrib Drainage Area Unts: Aquifer:	USGS-MA USGS Massachuse MA-TSW 271 SO HOLLOW ZOT 01090002 Not Reported Not Reported Sand and gravel aq	tts Water Scier MONITOR WE uifers (glaciate	nce Center Type: LL NEAR PSW SH-5 Drainage Area: Contrib Drainage Area: d regions)	Well Not F Not F	Reported Reported
Formation Type: Aquifer Type: Well Depth: Well Hole Depth:	Stratified Deposits, Unconfined single a 153 153	Undifferentiate quifer	d Construction Date: Well Depth Units: Well Hole Depth Units:	1999 ft ft	0101
D22 NNE 1/2 - 1 Mile Lower			F	FED USGS	USGS40000464138
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachuse MA-TSW 87 Not Reported Not Reported Sand and gravel aq Not Reported 19521218 ft ft	tts Water Scier uifers (glaciate	nce Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un d regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 0109 Not F ts: Not F 50.6 65.6	0002 Reported Reported
Ground water levels,Number o Feet below surface: Note:	f Measurements: 12.93 Not Reported	402	Level reading date: Feet to sea level:	1978 Not F	-03-02 Reported
Level reading date: Feet to sea level: Note:	1977-04-01 Not Reported A nearby site that ta	aps the same a	Feet below surface: quifer was being pumped.	13.66	6

_evel reading date: Feet to sea level:	1977-02-23 Not Reported	Feet below surface:	13.39	
Note:	A nearby site that taps the	e same aquifer was being pumped.		
_evel reading date:	1977-01-26	Feet below surface:	12.98	
-eet to sea level: Note:	A nearby site that taps the same aquifer was being pumped.			
_evel reading date:	1976-12-27	Feet below surface:	12.98	
Feet to sea level: Note:	Not Reported A nearby site that taps the	e same aquifer had been pumped recently.		
_evel reading date:	1976-11-29 Not Reported	Feet below surface:	12.94	
Note:	A nearby site that taps the	e same aquifer had been pumped recently.		
_evel reading date:	1976-10-28	Feet below surface:	12.98	
Feet to sea level:	Not Reported			
Note:	A nearby site that taps the	e same aquiter had been pumped recently.		
_evel reading date:	1976-09-28	Feet below surface:	14.37	
Feet to sea level:	Not Reported	same aquifer was being numped		
NOIE.		e same aquirer was being pumped.		
_evel reading date:	1976-09-15	Feet below surface:	14.51	
Feet to sea level:	Not Reported	same aquifer was being pumped		
NOIE.	A hearby site that taps the	same aquiler was being pumpeu.		
_evel reading date:	1976-08-26	Feet below surface:	15.11	
eet to sea level:	Not Reported	a come equifer was being numbed		
NOLE.	A hearby site that taps the	e same aquirer was being pumped.		
_evel reading date:	1976-07-27	Feet below surface:	14.84	
Feet to sea level: Note:	Not Reported A nearby site that taps the	e same aquifer was being pumped.		
			44.00	
_evel reading date:	1976-06-28 Not Reported	Feet below surface:	14.20	
Note:	A nearby site that taps the	e same aquifer was being pumped.		
_evel reading date:	1976-05-25	Feet below surface:	13.42	
Feet to sea level:	Not Reported			
Note:	Other conditions existed t	hat would affect the measured water level.		
_evel reading date:	1976-04-26	Feet below surface:	12.21	
Feet to sea level:	Not Reported	a come equifer had been summed recently		
NOIE.	A hearby site that taps the	e same aquirer had been pumped recently.		
_evel reading date:	1976-03-24	Feet below surface:	12.73	
Feet to sea level:	Not Reported	hat would affect the measured water level		
NOIE.	Other conditions existed t	hat would allect the measured water level.		
_evel reading date:	1976-02-25	Feet below surface:	12.62	
eet to sea level:	Not Reported	same aquifer was being pumped		
NOIE.	A hearby site that taps the	e same aquirer was being pumped.		
_evel reading date:	1976-02-04	Feet below surface:	12.80	
Feet to sea level:	Not Reported	hat would affect the measured water lavel		
NOLE.	Other conditions existed t	nat would affect the measured water Ievel.		
_evel reading date:	1976-01-29	Feet below surface:	12.02	
Feet to sea level:	Not Reported			
Note:	Other conditions existed that wo	ould affect the measured water level.		
---	----------------------------------	---------------------------------------	-------	
Level reading date: Feet to sea level:	1975-12-30 Not Reported	Feet below surface:	13.16	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date: Feet to sea level:	1975-12-15 Not Reported	Feet below surface:	13.33	
Note:	Other conditions existed that wo	ould affect the measured water level.		
Level reading date: Feet to sea level:	1975-11-24 Not Reported	Feet below surface:	13.59	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date: Feet to sea level:	1975-10-28 Not Reported	Feet below surface:	13.41	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date: Feet to sea level:	1975-09-25 Not Reported	Feet below surface:	14.77	
Note:	Other conditions existed that wo	ould affect the measured water level.		
Level reading date: Feet to sea level:	1975-08-26 Not Reported	Feet below surface:	15.02	
Note:	Other conditions existed that wo	ould affect the measured water level.		
Level reading date: Feet to sea level:	1975-07-23 Not Reported	Feet below surface:	14.37	
Note:	Other conditions existed that wo	ould affect the measured water level.		
Level reading date: Feet to sea level:	1975-06-25 Not Reported	Feet below surface:	14.06	
Note:	Other conditions existed that wo	ould affect the measured water level.		
Level reading date: Feet to sea level:	1975-05-28 Not Reported	Feet below surface:	13.46	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date: Feet to sea level:	1975-04-29 Not Reported	Feet below surface:	12.67	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date:	1975-03-26 Not Reported	Feet below surface:	12.37	
Note:	A nearby site that taps the same	e aquifer had been pumped recently.		
Level reading date:	1975-02-25 Not Reported	Feet below surface:	12.81	
Note:	A nearby site that taps the same	e aquifer had been pumped recently.		
Level reading date:	1975-01-29 Not Reported	Feet below surface:	13.36	
Note:	A nearby site that taps the same	e aquifer was being pumped.		
Level reading date: Feet to sea level:	1974-12-27 Not Reported	Feet below surface:	13.90	
Note:	A nearby site that taps the same	e aquifer had been pumped recently.		
Level reading date: Feet to sea level:	1974-11-26 Not Reported	Feet below surface:	13.45	
Note:	A nearby site that taps the same	e aquifer had been pumped recently.		

Level reading date: Feet to sea level: Note:	1974-10-29 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.83
Level reading date: Feet to sea level: Note:	1974-09-26 Not Reported A nearby site that taps the same aquif	Feet below surface:	13.73
Level reading date: Feet to sea level: Note:	1974-08-28 Not Reported A nearby site that taps the same aquif	Feet below surface: fer had been pumped recently.	14.72
Level reading date: Feet to sea level: Note:	1974-08-14 Not Reported A nearby site that taps the same aquif	Feet below surface:	14.62
Level reading date: Feet to sea level: Note:	1974-07-30 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	14.43
Level reading date: Feet to sea level:	1974-07-10 Not Reported A nearby site that taps the same aquit	Feet below surface:	13.10
Level reading date: Feet to sea level:	1974-06-26 Not Reported	Feet below surface:	13.25
Note: Level reading date: Feet to sea level:	A nearby site that taps the same aquit 1974-05-29 Not Reported	Feet below surface:	13.17
Note: Level reading date: Feet to sea level:	A nearby site that taps the same aquit 1974-05-15 Not Reported	Feet below surface:	12.77
Note: Level reading date: Feet to sea level:	A nearby site that taps the same aquit 1974-04-24 Not Reported	Feet below surface:	12.04
Note: Level reading date: Feet to sea level:	A nearby site that taps the same aquit 1974-04-08 Not Reported	Feet below surface:	12.87
Level reading date: Feet to sea level: Note:	A nearby site that taps the same aquit 1974-03-28 Not Reported A nearby site that taps the same aquit	Feet below surface:	11.83
Level reading date: Feet to sea level: Note:	1974-03-13 Not Reported A nearby site that taps the same aquif	Feet below surface:	11.82
Level reading date: Feet to sea level: Note:	1974-02-26 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	11.74
Level reading date: Feet to sea level: Note:	1974-02-19 Not Reported A nearby site that taps the same aquif	Feet below surface:	11.79
Level reading date: Feet to sea level:	1974-01-29 Not Reported	Feet below surface:	12.87

Ν	ote	
	~.~	2

A nearby site that taps the same aquifer was being pumped.

Level reading date: Feet to sea level: Note:	1974-01-28 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	12.85
Level reading date: Feet to sea level: Note:	1974-01-02 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.03
Level reading date: Feet to sea level: Note:	1973-12-20 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	12.54
Level reading date: Feet to sea level: Note:	1973-11-28 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.33
Level reading date: Feet to sea level: Note:	1973-11-20 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.46
Level reading date: Feet to sea level: Note:	1973-10-29 Not Reported A nearby site that taps the same aquif	Feet below surface:	13.48
Level reading date: Feet to sea level: Note:	1973-10-17 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.25
Level reading date: Feet to sea level: Note:	1973-09-27 Not Reported Other conditions existed that would aff	Feet below surface: fect the measured water level.	13.45
Level reading date: Feet to sea level: Note:	1973-09-12 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.71
Level reading date: Feet to sea level: Note:	1973-08-28 Not Reported Other conditions existed that would aff	Feet below surface: fect the measured water level.	14.22
Level reading date: Feet to sea level: Note:	1973-08-14 Not Reported A nearby site that taps the same aquif	Feet below surface:	14.24
Level reading date: Feet to sea level: Note:	1973-07-27 Not Reported Other conditions existed that would aff	Feet below surface: fect the measured water level.	13.95
Level reading date: Feet to sea level: Note:	1973-07-17 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.78
Level reading date: Feet to sea level: Note:	1973-06-27 Not Reported Other conditions existed that would aff	Feet below surface: fect the measured water level.	13.14
Level reading date: Feet to sea level: Note:	1973-06-13 Not Reported A nearby site that taps the same aquif	Feet below surface: er was being pumped.	13.12

Level reading date: Feet to sea level: Note:	1973-05-25 Not Reported Other conditions existed	Feet below surface: that would affect the measured water level.	12.64
Level reading date: Feet to sea level: Note:	1973-05-15 Not Reported Other conditions existed	Feet below surface:	12.44
Level reading date:	1973-04-26 Not Reported	Feet below surface:	12.28
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-04-13 Not Reported	Feet below surface:	12.07
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-03-27 Not Reported	Feet below surface:	12.44
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-03-14 Not Reported	Feet below surface:	12.49
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-02-26 Not Reported	Feet below surface:	12.08
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-02-08 Not Reported	Feet below surface:	12.11
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1973-01-26 Not Reported	Feet below surface:	11.98
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-12-27 Not Reported	Feet below surface:	12.21
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-11-27 Not Reported	Feet below surface:	12.52
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-11-10 Not Reported	Feet below surface:	12.63
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-10-26 Not Reported	Feet below surface:	12.29
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-09-27 Not Reported	Feet below surface:	12.39
NOLE.		mat would anect the measured water level.	
Level reading date: Feet to sea level:	1972-08-29 Not Reported	Feet below surface:	13.85
NOLE.		mat would anect the measured water level.	
Level reading date: Feet to sea level:	1972-07-27 Not Reported	Feet below surface:	13.85

NI	^ +	0	
IN	υι	e	

Other conditions existed that would affect the measured water level.

Level reading date: Feet to sea level: Note:	1972-06-27 Not Reported Other conditions existed	Feet below surface: that would affect the measured water level.	12.78
Level reading date: Feet to sea level:	1972-06-07 Not Reported	Feet below surface:	12.68
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-06-06 Not Reported	Feet below surface:	12.22
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-06-05 Not Reported	Feet below surface:	12.34
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-06-01 Not Reported	Feet below surface:	12.30
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-05-25 Not Reported	Feet below surface:	12.95
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date:	1972-04-26 Not Reported	Feet below surface:	12.76
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-04-07 Not Reported	Feet below surface:	12.83
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-03-28 Not Reported	Feet below surface:	12.65
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date: Feet to sea level:	1972-02-25 Not Reported	Feet below surface:	12.48
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date:	1972-01-27 Not Reported	Feet below surface:	12.51
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date:	1971-12-27 Not Reported	Feet below surface:	12.47
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date:	1971-11-26	Feet below surface:	13.53
Note:	Other conditions existed	that would affect the measured water level.	
Level reading date:	1971-10-27	Feet below surface:	13.90
Note:	Other conditions existed	that would affect the measured water level.	
Laura Laura (Paris 1974)	4074 00 07	Earthala (44.04
Level reading date: Feet to sea level:	1971-09-27 Not Reported	Feet below surface:	14.61
NOTE:	Uther conditions existed	mat would affect the measured water level.	

Level reading date: Feet to sea level: Note:	1971-08-26 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	14.30
Level reading date: Feet to sea level: Note:	1971-07-28 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	14.48
Level reading date: Feet to sea level: Note:	1971-06-25 Not Reported Other conditions existed t	Feet below surface:	13.24
Level reading date: Feet to sea level: Note:	1971-05-24 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	13.00
Level reading date: Feet to sea level: Note:	1971-04-27 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	12.56
Level reading date: Feet to sea level: Note:	1971-03-26 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	12.87
Level reading date: Feet to sea level: Note:	1971-02-24 Not Reported Other conditions existed t	Feet below surface:	12.31
Level reading date: Feet to sea level: Note:	1971-01-27 Not Reported Other conditions existed t	Feet below surface:	12.86
Level reading date: Feet to sea level: Note:	1970-12-28 Not Reported Other conditions existed t	Feet below surface:	12.66
Level reading date: Feet to sea level: Note:	1970-11-24 Not Reported Other conditions existed t	Feet below surface:	13.02
Level reading date: Feet to sea level: Note:	1970-10-28 Not Reported Other conditions existed t	Feet below surface:	13.05
Level reading date: Feet to sea level: Note:	1970-09-28 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	13.18
Level reading date: Feet to sea level: Note:	1970-08-27 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	14.22
Level reading date: Feet to sea level: Note:	1970-07-29 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	14.41
Level reading date: Feet to sea level: Note:	1970-06-26 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	13.57
Level reading date: Feet to sea level:	1970-05-20 Not Reported	Feet below surface:	12.60

N I	-+-	
IN	ole	

Other conditions existed that would affect the measured water level.

Level reading date: Feet to sea level: Note:	1970-04-24 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	11.43
Level reading date: Feet to sea level: Note:	1970-03-25 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.30
Level reading date: Feet to sea level:	1970-02-24 Not Reported	Feet below surface:	11.84
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level: Note:	1970-01-26 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.28
Level reading date: Feet to sea level: Note:	1969-12-30 Not Reported Other conditions existed that would af	Feet below surface:	12.35
Level reading date: Feet to sea level:	1969-11-25 Not Reported	Feet below surface:	13.02
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level:	1969-10-29 Not Reported	Feet below surface:	13.56
Note:	Other conditions existed that would an	fect the measured water level.	
Level reading date: Feet to sea level:	1969-09-26 Not Reported	Feet below surface:	14.18
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level:	1969-08-27 Not Reported	Feet below surface:	14.74
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level:	1969-07-29 Not Reported	Feet below surface:	14.28
Note:	Other conditions existed that would an	fect the measured water level.	
Level reading date: Feet to sea level:	1969-06-27 Not Reported	Feet below surface:	13.76
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level:	1969-05-26 Not Reported	Feet below surface:	12.79
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level:	1969-04-28 Not Reported	Feet below surface:	12.34
Note:	Other conditions existed that would af	fect the measured water level.	
Level reading date: Feet to sea level: Note:	1969-03-27 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.14
Level reading date: Feet to sea level: Note:	1969-02-26 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.25

_evel reading date: ⁻ eet to sea level: Note:	1969-01-27 Not Reported Other conditions existed th	Feet below surface: at would affect the measured water level.	13.19
Level reading date: Feet to sea level: Note:	1968-12-26 Not Reported Other conditions existed th	Feet below surface: at would affect the measured water level.	13.30
_evel reading date: Feet to sea level:	1968-11-25 Not Reported	Feet below surface:	13.43
Note:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level: Note:	1968-10-29 Not Reported Other conditions existed th	Feet below surface: at would affect the measured water level.	13.91
evel reading date:	1968-09-25	Feet below surface:	14.03
Feet to sea level:	Not Reported	reel below surface.	14.03
Note:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level:	1968-08-27 Not Reported Other conditions existed th	Feet below surface:	14.97
NOICE.		at would affect the measured water level.	
Level reading date: Feet to sea level:	1968-07-26 Not Reported	Feet below surface:	14.68
Note:	Other conditions existed th	at would affect the measured water level.	
_evel reading date: Feet to sea level:	1968-06-26 Not Reported	Feet below surface:	13.75
Note:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level:	1968-05-27 Not Reported	Feet below surface:	13.28
Note:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level:	1968-04-22 Not Reported	Feet below surface:	12.73
Note:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level:	1968-03-27 Not Reported	Feet below surface:	12.46
NOTE:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level: Note:	1968-02-27 Not Reported Other conditions existed th	Feet below surface: at would affect the measured water level.	12.69
aval reading data	1068 01 20	Fact below surface:	10.24
Feet to sea level: Note:	Not Reported Other conditions existed th	at would affect the measured water level.	12.34
Level reading date: Feet to sea level:	1967-12-26 Not Reported	Feet below surface:	13.27
NOLE:	Other conditions existed th	at would affect the measured water level.	
Level reading date: Feet to sea level: Note:	1967-11-27 Not Reported Other conditions existed th	Feet below surface: at would affect the measured water level.	13.00
	4007 40 00		40.00
Level reading date:	Not Reported	Feet below sufface:	13.20

N I	-+-	
IN	ole	

Other conditions existed that would affect the measured water level.

1967-09-27 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	13.60
1967-08-23 Not Reported Other conditions existed that would af	Feet below surface:	13.64
1967-08-22 Not Reported	Feet below surface:	13.55
Other conditions existed that would af	fect the measured water level.	
1967-08-08 Not Reported Other conditions existed that would af	Feet below surface: fect the measured water level.	12.55
1967-07-26 Not Reported	Feet below surface:	12.61
Other conditions existed that would af	fect the measured water level.	
1967-06-27 Not Reported	Feet below surface:	12.03
Other conditions existed that would af	fect the measured water level.	
1967-05-24 Not Reported	Feet below surface:	12.58
Other conditions existed that would af	fect the measured water level.	
1967-04-25 Not Reported	Feet below surface:	12.20
Other conditions existed that would af	fect the measured water level.	
1967-03-29 Not Reported	Feet below surface:	12.43
Other conditions existed that would af	fect the measured water level.	
1967-02-28 Not Reported	Feet below surface:	12.90
Other conditions existed that would af	fect the measured water level.	
1967-01-27 Not Reported	Feet below surface:	12.38
Other conditions existed that would af	fect the measured water level.	
1966-12-21 Not Reported	Feet below surface:	12.88
Other conditions existed that would af	fect the measured water level.	
1966-11-28 Not Reported	Feet below surface:	12.43
Other conditions existed that would af	fect the measured water level.	
1966-11-26 Not Reported	Feet below surface:	12.53
Other conditions existed that would af	fect the measured water level.	
1966-10-25 Not Reported Other conditions existed that would af	Feet below surface:	13.74
	1967-09-27 Not Reported Other conditions existed that would at 1967-08-23 Not Reported Other conditions existed that would at 1967-08-22 Not Reported Other conditions existed that would at 1967-08-08 Not Reported Other conditions existed that would at 1967-07-26 Not Reported Other conditions existed that would at 1967-06-27 Not Reported Other conditions existed that would at 1967-06-27 Not Reported Other conditions existed that would at 1967-05-24 Not Reported Other conditions existed that would at 1967-04-25 Not Reported Other conditions existed that would at 1967-03-29 Not Reported Other conditions existed that would at 1967-02-28 Not Reported Other conditions existed that would at 1967-01-27 Not Reported Other conditions existed that would at 1966-10-25 Not Reported Other conditions existed that would at 1966-11-26 Not Reported Other conditions existed that would at 1966-11-25 Not Reported Other conditions existed that would at 1966-10-25 Not Reported Other conditions existed that would at	1967-09-27Feet below surface:Not Reported1967-08-23Feet below surface:Not ReportedOther conditions existed that would affect the measured water level.1967-08-22Feet below surface:Not ReportedOther conditions existed that would affect the measured water level.1967-08-08Feet below surface:Not ReportedTeet below surface:Other conditions existed that would affect the measured water level.1967-06-27Feet below surface:Not ReportedTeet below surface:Not Report

Level reading date: Feet to sea level: Note:	1966-09-27 Not Reported Other conditions existed t	Feet below surface: hat would affect the measured water level.	13.99
Level reading date: Feet to sea level:	1966-08-25 Not Reported Other conditions existed t	Feet below surface:	14.56
Level reading date:	1966-07-22	Feet below surface.	14 95
Feet to sea level:	Not Reported	hat would affect the measured water level	14.95
Note.	Other conditions existed i		
Level reading date: Feet to sea level:	1966-06-23 Not Reported	Feet below surface:	14.37
Note:	Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1966-05-29	Feet below surface:	14.36
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1966-04-25	Feet below surface:	13.72
Feet to sea level:	Not Reported		-
Note:	Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1966-03-21 Not Reported	Feet below surface:	13.46
Note:	Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1966-02-28	Feet below surface:	12.87
Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1966-01-31	Feet below surface:	13.53
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1965-12-20	Feet below surface:	12.99
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1965-11-23	Feet below surface:	13.11
Feet to sea level:	Not Reported	hat would affect the measured water level	
Note.			
Level reading date:	1965-10-27	Feet below surface:	14.17
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1965-09-28	Feet below surface:	14.51
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level	
Level reading date:	1965-08-26	Feet below surface:	15.38
Feet to sea level: Note:	Not Reported Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1965-07-28 Not Reported	Feet below surface:	15.22
Note:	Other conditions existed t	hat would affect the measured water level.	
Level reading date:	1965-06-28	Feet below surface.	14 70
Feet to sea level:	Not Reported	i ou below surface.	14.10

N I	-+-	
IN	ole	

Other conditions existed that would affect the measured water level.

Level reading date: Feet to sea level: Note:	1965-05-28 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	13.72
Level reading date: Feet to sea level: Note:	1965-04-27 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	13.46
Level reading date: Feet to sea level: Note:	1965-03-29 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	12.55
Level reading date: Feet to sea level: Note:	1965-02-28 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	13.26
Level reading date: Feet to sea level: Note:	1965-01-29 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	13.32
Level reading date: Feet to sea level:	1964-12-29 Not Reported Other conditions existed that would aff	Feet below surface:	13.34
Level reading date: Feet to sea level: Note:	1964-11-24 Not Reported Other conditions existed that would aff	Feet below surface:	13.63
Level reading date: Feet to sea level:	1964-10-27 Not Reported Other conditions existed that would aff	Feet below surface:	13.77
Level reading date: Feet to sea level: Note:	1964-09-28 Not Reported Other conditions existed that would aff	Feet below surface:	14.29
Level reading date: Feet to sea level: Note:	1964-09-01 Not Reported Other conditions existed that would aff	Feet below surface:	14.46
Level reading date: Feet to sea level:	1964-07-29 Not Reported Other conditions existed that would aff	Feet below surface:	14.32
Level reading date: Feet to sea level: Note:	1964-06-30 Not Reported Other conditions existed that would aff	Feet below surface:	12.88
Level reading date: Feet to sea level: Note:	1964-05-27 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	13.51
Level reading date: Feet to sea level: Note:	1964-04-28 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	12.64
Level reading date: Feet to sea level: Note:	1964-03-30 Not Reported Other conditions existed that would aft	Feet below surface: fect the measured water level.	12.50

Level reading date: Feet to sea level: Note:	1964-02-28 Not Reported Other conditions existed that would a	Feet below surface: affect the measured water leve	12.69 el.
Level reading date: Feet to sea level: Note:	1964-01-31 Not Reported Other conditions existed that would a	Feet below surface: affect the measured water leve	13.05 əl.
Level reading date: Feet to sea level: Note:	1963-12-30 Not Reported Other conditions existed that would a	Feet below surface: affect the measured water leve	12.28 əl.
Level reading date: Feet to sea level: Note:	1963-12-02 Not Reported Other conditions existed that would a	Feet below surface: affect the measured water leve	12.35 el.
Level reading date: Feet to sea level: Note:	1963-10-25 Not Reported Other conditions existed that would a	Feet below surface: affect the measured water leve	13.66 el.
Level reading date: Feet to sea level: Note:	1963-09-30 Not Reported Other conditions existed that would a	Feet below surface:	13.64 əl.
Level reading date: Feet to sea level: Note:	1963-08-29 Not Reported Other conditions existed that would a	Feet below surface:	14.45 el.
Level reading date: Feet to sea level: Note:	1963-07-31 Not Reported Other conditions existed that would a	Feet below surface:	14.26 el.
Level reading date: Feet to sea level: Note:	1963-06-28 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	14.10
Level reading date: Feet to sea level: Note:	1963-05-29 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	13.29
Level reading date: Feet to sea level: Note:	1963-04-30 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	12.60
Level reading date: Feet to sea level: Note:	1963-04-01 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	12.12
Level reading date: Feet to sea level: Note:	1963-02-28 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	12.35
Level reading date: Feet to sea level: Note:	1963-01-31 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	11.62
Level reading date: Feet to sea level: Note:	1962-12-28 Not Reported Other conditions existed that would affect t	Feet below surface: he measured water level.	11.69
Level reading date: Feet to sea level:	1962-11-29 Not Reported	Feet below surface:	12.48

Note:	Other conditions existed that would affect the measured water level.	
Level reading date:	1962-10-30 Feet below surface:	13.09
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-09-26 Feet below surface:	13.13
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-06-28 Feet below surface:	13.40
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-05-26Feet below surface:	12.10
Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-04-25 Feet below surface:	11.70
Note:	Other conditions existed that would affect the measured water level.	
Level reading date:	1962-03-30 Feet below surface:	12.00
Note:	Other conditions existed that would affect the measured water level.	
Level reading date:	1962-02-26 Feet below surface:	12.20
Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-02 Feet below surface:	12.10
Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1962-01-01Feet below surface:	12.00
Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-12-01 Feet below surface:	12.00
Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-11-01 Feet below surface:	12.30
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-10-01 Feet below surface:	12.40
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-09-01Feet below surface:	13.30
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-07-31 Feet below surface:	14.60
⊢eet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	
Level reading date:	1961-06-26Feet below surface:	13.70
⊢eet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.	

Level reading date: Feet to sea level: Note:	1961-06-02 Not Reported Other conditions existed that would affect th	Feet below surface:	11.70
Level reading date: Feet to sea level: Note:	1961-04-01 Not Reported Other conditions existed that would affect th	Feet below surface:	11.80
11010.			
Level reading date: Feet to sea level: Note:	1961-03-27 Not Reported Other conditions existed that would affect th	Feet below surface:	12.50
11010.			
Level reading date: Feet to sea level:	1961-02-27 Not Reported Other conditions existed that would affect th	Feet below surface:	12.20
Note.		ie measureu water ievei.	
Level reading date: Feet to sea level:	1961-01-30 Not Reported	Feet below surface:	11.90
Note:	Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1961-01-09	Feet below surface:	12.40
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-11-28	Feet below surface:	12.00
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-10-31	Feet below surface:	13.60
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-09-26	Feet below surface:	14.40
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-08-29	Feet below surface:	14.70
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-07-29	Feet below surface:	14.10
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-06-27	Feet below surface:	12 50
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	12.00
Level reading date:	1960-05-30	Feet below surface:	11.70
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	ne measured water level.	
Level reading date:	1960-04-30	Feet below surface:	12.60
Feet to sea level:	Not Reported Other conditions existed that would affect the	he measured water level	12.00
11015.		ie measureu waler ievei.	
Level reading date: Feet to sea level:	1960-03-26 Not Reported	Feet below surface:	11.70
Note:	Other conditions existed that would affect the	ne measured water level.	
Level reading date: Feet to sea level:	1960-02-27 Not Reported	Feet below surface:	11.80

Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1960-01-30 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-12-31 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-11-28 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-10-31 Not Deported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-09-26	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-08-29 Nat Danastad	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-07-25	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-06-27	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-05-30	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-04-25	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-03-28	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-02-28	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1959-01-31	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1958-12-31	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date:	1958-11-29 Nat Deported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.

12.30

12.60

12.40

12.60

13.10

12.20

13.20

12.20

13.20

11.80

12.20

11.90

12.10

12.00

11.80

Level reading date: Feet to sea level: Note:	1958-10-25 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	11.80
Level reading date: Feet to sea level:	1958-09-27 Not Reported Other conditions existed that would affect th	Feet below surface:	12.10
Level reading date: Feet to sea level:	1958-08-30 Not Reported Other conditions existed that would affect th	Feet below surface:	12.60
Level reading date: Feet to sea level: Note:	1958-07-26 Not Reported Other conditions existed that would affect th	Feet below surface:	13.60
Level reading date: Feet to sea level: Note:	1958-06-28 Not Reported Other conditions existed that would affect th	Feet below surface:	11.80
Level reading date: Feet to sea level: Note:	1958-05-31 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	11.30
Level reading date: Feet to sea level: Note:	1958-04-26 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	11.20
Level reading date: Feet to sea level: Note:	1958-03-29 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	11.80
Level reading date: Feet to sea level: Note:	1958-02-22 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	12.00
Level reading date: Feet to sea level: Note:	1958-01-25 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	12.50
Level reading date: Feet to sea level: Note:	1957-12-28 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	12.50
Level reading date: Feet to sea level: Note:	1957-11-09 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	13.10
Level reading date: Feet to sea level: Note:	1957-11-02 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	13.00
Level reading date: Feet to sea level: Note:	1957-10-26 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	13.20
Level reading date: Feet to sea level: Note:	1957-10-19 Not Reported Other conditions existed that would affect th	Feet below surface: e measured water level.	13.30
Level reading date: Feet to sea level:	1957-10-12 Not Reported	Feet below surface:	13.20

Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-10-05 Feet below surface: Not Reported	13.50	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-09-28 Feet below surface:	13.40	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-09-21 Feet below surface:	12.40	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-09-14 Feet below surface:	13.60	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-09-07 Feet below surface:	13.70	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-08-31 Feet below surface:	14.60	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-08-24 Feet below surface:	14.50	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-08-17 Feet below surface:	14.10	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-08-10 Feet below surface:	14.50	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-08-03 Feet below surface:	14.40	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-07-27 Feet below surface:	14.10	
Note:	Other conditions existed that would affect the measured water level.		
Level reading date:	1957-07-20Feet below surface:	15.70	
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.		
Level reading date:	1957-07-13 Feet below surface:	14.50	
Note:	Not Reported Other conditions existed that would affect the measured water level.		
Level reading date:	1957-07-06 Feet below surface:	14.50	
Note:	Not Reported Other conditions existed that would affect the measured water level.		
Level reading date:	1957-06-29 Feet below surface:	14.50	
⊢eet to sea level: Note:	Not Reported Other conditions existed that would affect the measured water level.		

Level reading date: Feet to sea level: Note:	1957-06-22 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	13.40
Feet to sea level:	1957-06-15 Not Reported	Feet below surface:	14.10
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-06-08	Feet below surface:	13.00
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	e measured water level.	
Lovel reading date:	1057.06.01	Foot bolow surface:	12.90
Feet to sea level:	Not Reported	reet below surface.	12.00
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-05-25	Feet below surface:	12.50
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-05-18	Feet below surface:	12 40
Feet to sea level:	Not Reported	reer below sunace.	12.40
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-05-11 Not Deported	Feet below surface:	12.80
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-05-04	Feet below surface:	12.20
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-04-27 Not Reported	Feet below surface:	12.20
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-04-20	Feet below surface:	12.20
Feet to sea level:	Not Reported	a massured water level	
Note.			
Level reading date: Feet to sea level:	1957-03-30 Not Reported	Feet below surface:	12.30
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-03-23	Feet below surface:	12.30
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	e measured water level.	
Level as a Para data.	4057 00 40		40.00
Feet to sea level:	Not Reported	Feet below surface:	12.60
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-03-09	Feet below surface:	12.60
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	e measured water level.	
Level reading data:	1957-03-02	Feet below surface:	12 60
Feet to sea level:	Not Reported		12.00
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date: Feet to sea level:	1957-02-23 Not Reported	Feet below surface:	12.50

Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-02-16	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-02-09	Feet below surface:	12.50
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	e measured water level.	
Lovel reading data	1057.00.00		10.00
East to soo lovel:	1957-02-02 Not Roported	Feet below surface.	12.30
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-01-26	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-01-19	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-01-12	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1957-01-05	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-12-29	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-12-22	Feet below surface:	12.40
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-12-15	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-12-07	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1956-12-01	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-11-10	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-11-03	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-10-27	Feet below surface:	12.60
Feet to sea level:	Not Reported		
Note:	Other conditions existed that would affect the	e measured water level.	
Level reading date:	1956-10-20	Feet below surface:	12.20

Feet to sea level: Note:	Not Reported Other conditions existed that would affect the measured wat	er level.
Level reading date: Feet to sea level: Note:	1956-10-13 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.60 er level.
Level reading date: Feet to sea level: Note:	1956-10-06 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.50 er level.
Level reading date: Feet to sea level: Note:	1956-09-29 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.50 er level.
Level reading date: Feet to sea level: Note:	1956-09-22 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.60 er level.
Level reading date: Feet to sea level: Note:	1956-09-15 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 11.80 er level.
Level reading date: Feet to sea level: Note:	1956-09-08 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 11.90 er level.
Level reading date: Feet to sea level: Note:	1956-09-01 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.80 er level.
Level reading date: Feet to sea level: Note:	1956-08-25 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 11.80 er level.
Level reading date: Feet to sea level: Note:	1956-08-18 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 11.80 er level.
Level reading date: Feet to sea level: Note:	1956-08-11 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 11.80 er level.
Level reading date: Feet to sea level: Note:	1956-07-28 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.50 er level.
Level reading date: Feet to sea level: Note:	1956-07-21 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.50 er level.
Level reading date: Feet to sea level: Note:	1956-07-14 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.40 er level.
Level reading date: Feet to sea level: Note:	1956-07-07 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.40 er level.
Level reading date: Feet to sea level: Note:	1956-06-30 Feet below sur Not Reported Other conditions existed that would affect the measured wat	face: 12.50 er level.

Level reading date:	1956-06-23	Feet below surface:	12.10		
Feet to sea level: Note:	Not Reported Other conditions existed tha	ot Reported ther conditions existed that would affect the measured water level.			
Level reading date: Feet to sea level:	1956-06-16 Not Reported	Feet below surface:	11.20		
Note:	Other conditions existed that	t would affect the measured water level.			
Level reading date: Feet to sea level:	1956-06-09 Not Reported	Feet below surface:	11.60		
Note:	Other conditions existed tha	t would affect the measured water level.			
Level reading date: Feet to sea level:	1956-06-02 Not Reported	Feet below surface:	11.50		
Note:	Other conditions existed tha	t would affect the measured water level.			
Level reading date: Feet to sea level:	1956-05-26 Not Reported	Feet below surface:	11.40		
Note:	Other conditions existed that	t would affect the measured water level.			
Level reading date:	1956-05-19	Feet below surface:	11.30		
Feet to sea level:	Not Reported	t would affect the measured water level			
Note.					
Level reading date: Feet to sea level:	1956-05-12 Not Reported	Feet below surface:	11.30		
Note:	Other conditions existed that	t would affect the measured water level.			
Level reading date:	1956-05-05	Feet below surface:	11.20		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1956-04-28	Feet below surface:	11.00		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1956-04-21	Feet below surface:	11.11		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1956-04-14	Feet below surface:	11.10		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1956-04-07	Feet below surface:	11.30		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1956-03-31 Not Reported	Feet below surface:	11.30		
Note:	Other conditions existed that	t would affect the measured water level.			
Level reading date:	1956-03-26	Feet below surface:	11.50		
Note:	Other conditions existed tha	t would affect the measured water level.			
Level reading date:	1056-02-18	East below surface:	11.00		
Feet to sea level: Note:	Not Reported Other conditions existed tha	t would affect the measured water level.	11.00		
Lovel readice date:	1056 00 11		44 50		
Feet to sea level:	Not Reported	Feet below surface:	11.50		

Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1956-02-04 Not Reported Other conditions existed that would affect the	Feet below surface:
Level reading date:	1956-01-28	Feet below surface:
Feet to sea level: Note:	Not Reported Other conditions existed that would affect the	e measured water level.
Level reading date:	1956-01-05	Feet below surface:
Note:	A nearby site that taps the same aquifer had	been pumped recently.
Level reading date: Feet to sea level:	1955-12-31 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-12-24 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-12-17 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-12-10 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-12-03 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-11-17 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-11-12 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-11-05 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-10-29 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-10-22 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-10-15 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.
Level reading date: Feet to sea level:	1955-10-08 Not Reported	Feet below surface:
Note:	Other conditions existed that would affect the	e measured water level.

11.70

11.70

12.33

12.20

12.10

12.10

12.30

12.00

12.00

12.10

12.00

12.40

12.40

12.50

12.50

Level reading date: Feet to sea level: Note:	1955-10-01 Not Reported Other conditions existed that would affect	Feet below surface: the measured water level.	12.50
Level reading date: Feet to sea level: Note:	1955-09-24 Not Reported Other conditions existed that would affect	Feet below surface:	12.50
Level reading date: Feet to sea level:	1955-09-17 Not Reported	Feet below surface:	12.50
Note:		The measured water level.	40.00
Feet to sea level: Note:	Not Reported Noter conditions existed that would affect	the measured water level.	12.60
Level reading date: Feet to sea level: Note:	1955-09-03 Not Reported Other conditions existed that would affect :	Feet below surface:	12.50
Level reading date:	1955-08-27	Feet below surface:	12 60
Feet to sea level: Note:	Not Reported Other conditions existed that would affect	the measured water level.	12.00
Level reading date: Feet to sea level:	1955-08-20 Not Reported	Feet below surface:	13.40
Note:	Other conditions existed that would affect	the measured water level.	
Level reading date: Feet to sea level: Note:	1955-08-13 Not Reported Other conditions existed that would affect	Feet below surface: the measured water level.	13.30
Level reading date: Feet to sea level:	1955-08-06 Not Reported	Feet below surface:	13.70
Note:	Other conditions existed that would affect	the measured water level.	
Level reading date: Feet to sea level: Note:	1955-07-30 Not Reported Other conditions existed that would affect	Feet below surface: the measured water level.	13.50
Level reading date: Feet to sea level:	1955-07-23 Not Reported	Feet below surface:	14.50
Note:	Other conditions existed that would affect	the measured water level.	
Level reading date: Feet to sea level: Note:	1955-07-16 Not Reported Other conditions existed that would affect	Feet below surface: the measured water level.	13.10
Level reading date: Feet to sea level:	1955-07-09 Not Reported	Feet below surface:	12.90
Note:	Other conditions existed that would affect	the measured water level.	
Level reading date: Feet to sea level: Note:	1955-07-02 Not Reported Other conditions existed that would affect	Feet below surface: the measured water level.	11.80
Level reading date: Feet to sea level:	1955-06-25 Not Reported Other conditions existed that would effect	Feet below surface:	12.60
NOLE:		ine measured water level.	
Level reading date: Feet to sea level:	1955-06-18 Not Reported	Feet below surface:	12.50

Note:	Other conditions existed that would affect the measured water level.			
Level reading date:	1955-06-11 Feet below surface:	12.20		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-06-04 Feet below surface: Not Reported	12.00		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date: Feet to sea level:	1955-05-28 Feet below surface: Not Reported	12.00		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-05-21 Feet below surface: Not Reported	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-05-14 Feet below surface: Not Reported	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-05-07 Feet below surface: Not Reported	11.80		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-04-30 Feet below surface: Not Reported	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-04-23 Feet below surface: Not Reported	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-04-16 Feet below surface:	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-04-09 Feet below surface:	11.90		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-04-02 Feet below surface:	11.90		
Note:	Other conditions existed that would affect the measured water level	el.		
Level reading date:	1955-03-26 Feet below surface:	12.00		
Note:	Other conditions existed that would affect the measured water level	el.		
Level reading date:	1955-03-19 Feet below surface:	11.90		
Note:	Other conditions existed that would affect the measured water level	el.		
Level reading date:	1955-03-12 Feet below surface:	12.00		
Note:	Other conditions existed that would affect the measured water leve	el.		
Level reading date:	1955-03-05 Feet below surface:	12.00		
Note:	Other conditions existed that would affect the measured water level	el.		

Level reading date: Feet to sea level: Note:	1955-02-26 Not Reported Other conditions existed that would affect the	Feet below surface:	12.00
Level reading date: Feet to sea level: Note:	1955-02-19 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	11.90
Level reading date: Feet to sea level: Note:	1955-02-12 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	11.90
Level reading date: Feet to sea level: Note:	1955-02-05 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	11.90
Level reading date: Feet to sea level: Note:	1955-01-29 Not Reported Other conditions existed that would affect the	Feet below surface:	11.90
Level reading date: Feet to sea level: Note:	1955-01-22 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	11.90
Level reading date: Feet to sea level: Note:	1955-01-15 Not Reported Other conditions existed that would affect the	Feet below surface:	12.10
Level reading date: Feet to sea level: Note:	1955-01-08 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	12.20
Level reading date: Feet to sea level: Note:	1955-01-01 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	12.30
Level reading date: Feet to sea level: Note:	1954-12-25 Not Reported Other conditions existed that would affect the	Feet below surface:	12.50
Level reading date: Feet to sea level: Note:	1954-12-18 Not Reported Other conditions existed that would affect the	Feet below surface:	12.50
Level reading date: Feet to sea level: Note:	1954-12-11 Not Reported Other conditions existed that would affect the	Feet below surface: e measured water level.	12.70

23 NW 1/2 - 1 Mile Lower

Organization ID:

Monitor Location:

Drainage Area:

Formation Type:

Description:

Aquifer:

Organization Name:

Contrib Drainage Area:

USGS-MA USGS Massachusetts Water Science Center MA-TSW 143 Well Type: HUC: Not Reported 01090002 Not Reported Drainage Area Units: Not Reported Not Reported Contrib Drainage Area Unts: Not Reported Sand and gravel aquifers (glaciated regions) Not Reported Aquifer Type: Not Reported

FED USGS

USGS40000464114

TC7228749.1s Page A-54

Construction Date: Well Depth Units: Well Hole Depth Units:	19720517 ft ft		Well Depth: Well Hole Depth:	14.2 14.2
Ground water levels,Number of M Feet below surface: Note:	leasurements: 5.93 Not Reported	23	Level reading date: Feet to sea level:	1975-05-21 Not Reported
Level reading date:	1974-09-04		Feet below surface:	6.41
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-08-13		Feet below surface:	6.41
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-07-10		Feet below surface:	6.00
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-05-15		Feet below surface:	5.83
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-04-07		Feet below surface:	5.74
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-03-13		Feet below surface:	5.63
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-02-21		Feet below surface:	5.63
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-01-30		Feet below surface:	5.67
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1974-01-02		Feet below surface:	5.78
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-11-20		Feet below surface:	6.02
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-10-17		Feet below surface:	6.05
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-09-12		Feet below surface:	6.02
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-08-14		Feet below surface:	6.11
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-07-17		Feet below surface:	5.89
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-06-13		Feet below surface:	5.70
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-05-15		Feet below surface:	5.47
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-04-13		Feet below surface:	5.04
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-03-14		Feet below surface:	5.78
Feet to sea level:	Not Reported		Note:	Not Reported

Level reading date:	1973-02-08	Feet below surface:	5.47
Feet to sea level:	Not Reported	Note:	Not Reported
			·
Level reading date:	1972-11-10	Feet below surface:	5.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	5.66
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-17	Feet below surface:	5.66
Feet to sea level:	Not Reported	Note:	Not Reported
D24 NF			FED USGS USGS4000046413
1/2 - 1 Mile Lower			
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts W	ater Science Center	
Monitor Location:	MA-TSW 192	Type:	Well
Description:	Not Reported	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Un	ts: Not Reported
Aquifer:	Sand and gravel aguifers	s (glaciated regions)	
Formation Type:	Not Reported	Aquifer Type:	Not Reported
Construction Date:	19521218	Well Depth:	69.8
Well Depth Units:	ft	Well Hole Depth:	85
Well Hole Depth Units:	ft		
·			
Ground water levels,Number	of Measurements:	1 Level reading date:	1952-12-18
Feet below surface:	28.00	Feet to sea level:	Not Reported
Note:	Not Reported		
D25 NE			FED USGS USGS4000046414
1/2 - 1 Mile Lower			
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts W	ater Science Center	
Monitor Location:	MA-TSW 233	Type:	Well
Description:	Not Reported	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Un	its: Not Reported
Aquifer:	Sand and gravel aguifers	s (glaciated regions)	
Formation Type:	Not Reported	Aquifer Type:	Not Reported
Construction Date:	19521024	Well Depth:	62
Well Depth Units	ft	Well Hole Depth:	82
Well Hole Depth Units:	ft		
Ground water levels,Number	of Measurements:	1 Level reading date:	1952-10-24
Feet below surface:	26.10	Feet to sea level:	Not Reported
Note:	Not Reported		
	-		

Map ID					
Direction					
Distance Elevation				Databasa	EDR ID Number
				Database	
E26 SSF				FEDUSGS	1156540000463918
1/2 - 1 Mile					0000400910
Lower					
Organization ID:	USGS-MA				
Organization Name:	LISGS Massachusetts	Water Science	Center		
Monitor Location:	MA-TSW 163			\//ell	
Description:	Not Reported		HUC	0109	0002
Drainage Area	Not Reported		Drainage Area Units	Not F	Reported
Contrib Drainage Area	Not Reported		Contrib Drainage Area Ur	nts: Not F	Reported
Aquifer:	Sand and gravel aguife	ers (glaciated re	gions)		topontou
Formation Type:	Not Reported	(3	Aguifer Type:	Not F	Reported
Construction Date:	19720519		Well Depth:	19.7	
Well Depth Units:	ft		Well Hole Depth:	Not F	Reported
Well Hole Depth Units:	Not Reported		·		
Ground water levels,Number	of Measurements:	23	Level reading date:	1975	-05-21
Feet below surface:	16.29		Feet to sea level:	Not F	Reported
Note:	Not Reported				
Level reading date:	1974-09-04		Feet below surface:	16.53	3
Feet to sea level	Not Reported		Note	Not F	eported
	nornoponou				
Level reading date:	1974-08-14		Feet below surface:	16.53	}
Feet to sea level:	Not Reported		Note:	Not F	Reported
Lovel reading date:	1074 07 10		Foot bolow ourfood:	16.00)
Eevel reading date.	Not Reported		Noto	Not F	- Penorted
	Not Reported		Note.	NOUT	leponed
Level reading date:	1974-05-15		Feet below surface:	15.86	6
Feet to sea level:	Not Reported		Note:	Not F	Reported
Lovel reading date:	1074 04 07		Foot bolow surface:	15.93)
Eevel reading date.	Not Reported		Noto	Not F	enorted
	Not Reported		Note.	Noti	leponeu
Level reading date:	1974-03-13		Feet below surface:	15.74	L
Feet to sea level:	Not Reported		Note:	Not F	Reported
					•
Level reading date:	1974-02-19		Feet below surface:	15.66	6
Feet to sea level:	Not Reported		Note:	Not F	Reported
Lovel reading date:	107/ 01 29		Foot bolow surface:	15 7	,
Feet to sea level:	Not Reported		Note	Not F	enorted
	Not Reported		Note.	Noti	leponed
Level reading date:	1974-01-02		Feet below surface:	15.91	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Lovel reading date:	1072 11 20		Foot bolow ourfood:	16.23	•
Eest to see level:	Not Reported		Note:	Not F	Penarted
reet to sea level.	Not Reported		Note.	NULF	reported
Level reading date:	1973-10-17		Feet below surface:	16.28	3
Feet to sea level:	Not Reported		Note:	Not F	Reported
Loval reading data	1072 00 42		Foot bolow curfocce	10 4	
Eeven reading date.	Not Reported		Note	ID.14	t Penarted
ו כבו וט שבמ וכעצו.	NOL REPUTED			INUL F	ceponeu
Level reading date:	1973-08-14		Feet below surface:	16.15	5
Feet to sea level:	Not Reported		Note:	Not F	Reported

Level reading date:	1973-07-17	Feet below surface:	15.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-13	Feet below surface:	15.67
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	15.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	15.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	15.70
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	15.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-10	Feet below surface:	16.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	15.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-19	Feet below surface:	15.96
Feet to sea level:	Not Reported	Note:	Not Reported

27 NE 1/2 - 1 Mile Lower

USGS-MA Organization ID: Organization Name: USGS Massachusetts Water Science Center Monitor Location: MA-TSW 272 Type: Well SO HOLLOW WELL FIELD ZOT MONITOR WELL SH8-3 Description: HUC: 01090002 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Sand and gravel aquifers (glaciated regions) Formation Type: Stratified Deposits, Undifferentiated Aquifer Type: Construction Date: 19990101 Unconfined single aquifer Well Depth: Well Depth Units: 205 ft Well Hole Depth: 205 Well Hole Depth Units: ft

28 ESE 1/2 - 1 Mile Higher

Organization ID:

Monitor Location:

Description:

Aquifer:

Drainage Area:

Formation Type:

Aquifer Type:

Organization Name:

USGS-MA USGS Massachusetts Water Science Center MA-TSW 45 Well Type: Not Reported HUC: 01090002 Drainage Area Units: Not Reported Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Sand and gravel aquifers (glaciated regions) Stratified Deposits, Undifferentiated Unconfined single aquifer Construction Date: 195002

FED USGS USGS40000464151

FED USGS USGS40000463975

TC7228749.1s Page A-58

Well Depth: Well Hole Depth:	120 120	Well Depth Units: Well Hole Depth Units:	ft ft
Ground water levels,Number Feet below surface: Note:	of Measurements: 1 65.50 Not Reported	Level reading date: Feet to sea level:	1950-02-01 Not Reported
E29 SE 1/2 - 1 Mile Lower		MA W	VELLS MA900000003145
PWS ID: Type: SubBasin:	4300019 Transient Non-Community CAPE COD	Site Name: Facility Name:	WHITMAN HOUSE RESTAURANT Not Reported
Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	NA GW SV Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	100 GP_6 Not Reported
Source ID: Source Name: Source Status: Source Availability:	4300019-01G WELL 1 A ACTIVE	PWS Name: PWS Status: PWS Class:	WHITMAN HOUSE RESTAURANT A NC
30 NNW 1/2 - 1 Mile Lower		FED	USGS USGS40000464208
Organization ID:			
Organization Name	USGS Massachusetts Water Scie	ance Center	
Monitor Location:	MA-TSW 147	Type:	Well
Description:	Not Reported	HÚC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (glaciate	ed regions)	Not Demode d
Construction Date:	19720518	Aquiler Type: Well Depth:	
Well Depth Units:	ft	Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported		
Ground water levels.Number	of Measurements: 5	Level reading date:	1973-10-18
Feet below surface:	1.20	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	1973-05-14	Feet below surface:	0.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-11	Feet below surface:	0.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	0.50
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date: Feet to sea level:	1972-05-18 Not Reported		Feet below surface: Note:	0.63 Not Reported
31 NNW 1/2 - 1 Mile Lower			FEI	D USGS USGS40000464202
Organization ID:	USGS-MA			
Organization Name:	USGS Massachus	etts Water Scie	ence Center	
Monitor Location:	MA-TSW 158		Туре:	Well
Description:	Not Reported		HUC:	01090002
Drainage Area:	Not Reported		Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported		Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel a	quifers (glaciat	ed regions)	
Formation Type:	Not Reported		Aquifer Type:	Not Reported
Construction Date:	19720504		Well Depth:	14.3
Well Depth Units:	ft		Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported			
Ground water levels.Number of	Measurements:	6	Level reading date:	1975-05-21
Feet below surface:	8.83		Feet to sea level:	Not Reported
Note:	Not Reported			
Level reading date:	1973-10-18		Feet below surface:	8.97
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1973-05-14		Feet below surface:	8.02
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1972-11-10		Feet below surface:	8.46
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1972-06-05		Feet below surface:	8.67
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1972-05-04		Feet below surface:	8.64
Feet to sea level:	Not Reported		Note:	Not Reported

32 South 1/2 - 1 Mile Lower

USGS-MA Organization ID: Organization Name: USGS Massachusetts Water Science Center Monitor Location: MA-TSW 162 Type: Well Description: Not Reported HUC: 01090002 Drainage Area Units: Drainage Area: Not Reported Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported Aquifer: Sand and gravel aquifers (glaciated regions) Formation Type: Not Reported Aquifer Type: Not Reported 19720519 Well Depth: Construction Date: 20.1 Well Depth Units: ft Well Hole Depth: 20.1 Well Hole Depth Units: ft Ground water levels, Number of Measurements: 48

Feet below surface: 12.37

Level reading date: Feet to sea level:

1977-04-11 Not Reported

USGS40000463863

FED USGS

Note:

Level reading date: Feet to sea level:

Not Reported
1977-03-01 Not Reported
1976-12-06 Not Reported
1976-10-29 Not Reported
1976-10-04 Not Reported
1976-08-31 Not Reported
1976-08-03 Not Reported
1976-07-02 Not Reported
1976-05-24 Not Reported
1976-04-28 Not Reported
1976-04-05 Not Reported
1976-03-01 Not Reported
1976-01-29 Not Reported
1975-11-26 Not Reported
1975-10-22 Not Reported
1975-09-29 Not Reported
1975-08-19 Not Reported

1975-07-22 Not Reported

1975-06-25 Not Reported

1975-05-19 Not Reported

1975-04-24 Not Reported Feet below surface: Note: Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note: 12.20 Not Reported

12.71 Not Reported

12.67 Not Reported

12.70 Not Reported

12.63 Not Reported

12.50 Not Reported

12.37 Not Reported

11.20 Not Reported

11.99 Not Reported

12.01 Not Reported

12.07 Not Reported

12.15 Not Reported

12.37 Not Reported

12.48 Not Reported

12.60 Not Reported

12.49 Not Reported

12.44 Not Reported

12.24 Not Reported

12.16 Not Reported

12.01 Not Reported

Level reading date:	1975-03-24	Feet below surface:	12.10
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-02-19	Feet below surface:	12.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-01-17	Feet below surface:	12.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-12-17	Feet below surface:	12.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-11-23	Feet below surface:	12.54
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-10-22	Feet below surface:	12.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-09-16	Feet below surface:	12.59
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-08-14	Feet below surface:	12.51
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-07-10	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-05-15	Feet below surface:	11.97
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-07	Feet below surface:	11.94
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-13	Feet below surface:	11.84
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-19	Feet below surface:	11.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-28	Feet below surface:	11.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	11.74
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	12.16
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-17	Feet below surface:	12.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-12	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	12.15
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-17	Feet below surface:	11.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-13	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported

TC7228749.1s Page A-62

Level reading date:	1973-05-15	Feet below surface:	11.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	11.27
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	11.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-10	Feet below surface:	11.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	11.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-31	Feet below surface:	11.92
Feet to sea level:	Not Reported	Note:	Not Reported

33 NW 1/2 - 1 Mile Higher

Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Water Science Center		
Monitor Location:	MA-TSW 142	Туре:	Well
Description:	Not Reported	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (glaciated	l regions)	
Formation Type:	Not Reported	Aquifer Type:	Not Reported
Construction Date:	1971	Well Depth:	64.3
Well Depth Units:	ft	Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported		
Ground water levels.Number of M	easurements: 50	Level reading date:	1977-04-11
Feet below surface:	54.63	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	1977-03-01	Feet below surface:	54.81
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-10-29	Feet below surface:	55.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-10-04	Feet below surface:	55.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-08-31	Feet below surface:	55.04
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-08-03	Feet below surface:	55.04
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-07-02	Feet below surface:	54.91
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-05-24	Feet below surface:	54.59
Feet to sea level:	Not Reported	Note:	Not Reported

FED USGS USGS4

USGS40000464163

Level reading date:	1976-04-28	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-04-05	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-03-01	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-01-29	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-12-29	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-11-26	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-10-22	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-09-29	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-08-19	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-07-22	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-06-25	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-05-19	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-04-24	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-03-24	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-02-19	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-01-17	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1974-12-17	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1974-11-23	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1974-10-22	Feet below :
Feet to sea level:	Not Reported	Note:
Level reading date:	1974-09-16	Feet below

Not Reported

1974-08-13

Not Reported

Level reading date: Feet to sea level:

Level reading date: Feet to sea level:

surface:

Feet below surface: Note:

Feet below surface: Note:

54.63 Not Reported

54.52 Not Reported

54.38 Not Reported

54.29 Not Reported

54.40 Not Reported

54.65 Not Reported

54.74 Not Reported

55.37 Not Reported

54.89 Not Reported

54.85 Not Reported

54.80 Not Reported

54.69 Not Reported

54.49 Not Reported

54.57 Not Reported

54.81 Not Reported

54.91 Not Reported

54.70 Not Reported

54.85 Not Reported

55.15 Not Reported

54.87 Not Reported

55.20 Not Reported

Level reading date:	1974-07-10	Feet below surface:	54.79		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-05-15	Feet below surface:	54.67		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-04-07	Feet below surface:	54.49		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-03-13	Feet below surface:	54.53		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-02-21	Feet below surface:	54.54		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-01-30	Feet below surface:	54.49		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1974-01-02	Feet below surface:	54.79		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-11-20	Feet below surface:	54.86		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-10-17	Feet below surface:	54.70		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-09-12	Feet below surface:	54.77		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-08-14	Feet below surface:	54.78		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-07-17	Feet below surface:	54.67		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-06-13	Feet below surface:	54.45		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-05-15	Feet below surface:	54.36		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-05-14	Feet below surface:	54.46		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-04-13	Feet below surface:	54.00		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-03-14	Feet below surface:	54.65		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1973-02-08	Feet below surface:	54.22		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1972-11-10	Feet below surface:	54.27		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1972-06-05	Feet below surface:	54.63		
Feet to sea level:	Not Reported	Note:	Not Reported		
Level reading date:	1972-06-02	Feet below surface:	54.47		
Feet to sea level:	Not Reported	Note:	Not Reported		
Map ID Direction					
------------------------------------	-------------------	-----------------	----------------------------	----------	--------------------
Distance Elevation			D	atabase	EDR ID Number
34 NNW 1/2 - 1 Mile Lower			F	ED USGS	USGS40000464235
Organization ID:	USGS-MA				
Organization Name:	USGS Massachuse	etts Water Sci	ence Center		
Monitor Location:	MA-TSW 148		Туре:	Well	
Description:	Not Reported		HUC:	0109	0002
Drainage Area:	Not Reported		Drainage Area Units:	Not F	Reported
Contrib Drainage Area:	Not Reported		Contrib Drainage Area Unte	s: Not F	Reported
Aquifer:	Sand and gravel a	quifers (glacia	ted regions)		
Formation Type:	Not Reported		Aquifer Type:	Not F	Reported
Construction Date:	19720518		Well Depth:	9	
Well Depth Units:	ft		Well Hole Depth:	Not F	Reported
Well Hole Depth Units:	Not Reported				
Ground water levels.Number	of Measurements:	6	Level reading date:	1975	-05-21
Feet below surface:	3.95		Feet to sea level:	Not F	Reported
Note:	Not Reported				
Level reading date:	1973-10-18		Feet below surface.	4 11	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1973-05-14		Feet below surface:	3.28	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1972-11-10		Feet below surface:	3.79	
Feet to sea level:	Not Reported		Note:	Not H	Reported
Level reading date:	1972-06-05		Feet below surface:	3.56	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1972-05-18		Feet below surface:	3.43	
Feet to sea level:	Not Reported		Note:	Not F	Reported
35 North 1/2 - 1 Mile			Μ	A WELLS	MA900000002839
Higher					
PWS ID:	4300042		Site Name:	MAN	IARAZZI RESTAURANT
Type:	Transient Non-Con	nmunity	Facility Name:	Not F	Reported
SubBasin:	CAPE COD				
Basemap:	NA		Accuracy Estimate (ft):	16	
Feature Type:	GW		Location Method:	GP_2	2
Primary Location Source:	SV		Secondary Location Source	e: Not F	Reported
Tertiary Location Source:	Not Reported				
Source ID:	4300042-01G		PWS Name:	MAM	IARAZZI RESTAURANT

Source ID:	4300042-01G	PWS Name:	MAMARAZZI RESTAURAN
Source Name:	WELL #1 MAMARAZZI RESTAURAN	Г	
PWS Status:	1	Source Status:	1
PWS Class:	NC	Source Availability:	ACTIVE

Map ID Direction					
Distance					
Elevation				Database	EDR ID Number
36 NNW 1/2 - 1 Mile Lower				FED USGS	USGS40000464216
Organization ID:	LISGS-MA				
Organization Name	USGS Massachusetts	Water Science	e Center		
Monitor Location:	MA-TSW 144			Well	
Description:	Not Reported		HUC:	0109	0002
Drainage Area:	Not Reported		Drainage Area Units:	Not F	Reported
Contrib Drainage Area:	Not Reported		Contrib Drainage Area U	nts: Not F	Reported
Aquifer:	Sand and gravel aquif	ers (glaciated	regions)		
Formation Type:	Not Reported		Aquifer Type:	Not F	Reported
Construction Date:	19720518		Well Depth:	8.9	
Well Depth Units:	ft		Well Hole Depth:	8.9	
Well Hole Depth Units:	ft				
		_			
Ground water levels,Number	of Measurements:	/	Level reading date:	1975	-05-21
Feet below surface:	2.03 Not Departed		Feet to sea level:	Not F	Reported
Note:	Not Reported				
Level reading date:	1974-09-04		Feet below surface:	2.65	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1973-10-18		Feet below surface:	1.34	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1973-05-14		Feet below surface:	1.73	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1972-11-10		Feet below surface:	1.94	
Feet to sea level:	Not Reported		Note:	Not F	Reported
	·				
Level reading date:	1972-06-05		Feet below surface:	1.94	
Feet to sea level:	Not Reported		Note:	Not F	Reported
Level reading date:	1972-05-18		Feet below surface.	1 77	
Feet to sea level	Not Reported		Note:	Not F	Reported
				1001	

37 ESE 1/2 - 1 Mile Higher

Organization ID: USGS-MA Organization Name: USGS Massachusetts Water Science Center Monitor Location: MA-TSW 74 Well Type: HUC: 01090002 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Sand and gravel aquifers (glaciated regions) Aquifer: Stratified Deposits, Undifferentiated Formation Type: Unconfined single aquifer Construction Date: 19510316 Aquifer Type: Well Depth: Well Depth Units: 158 ft Well Hole Depth: 160 Well Hole Depth Units: ft

Ground water levels, Number of Measurements:

4

Level reading date:

1973-05-14

USGS40000463981

FED USGS

Feet below surface:	102.43	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	1072-11-10	Feet below surface:	101.86
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	102.03
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1951-03-16	Feet below surface:	101.00
Feet to sea level:	Not Reported	Note:	Not Reported
 F38			
East 1/2 - 1 Mile Higher		FED	USGS USGS40000464022
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts V	Vater Science Center	
Monitor Location:	MA-TSW 285	Туре:	Well
Description:	CCC OBS WELL P3	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquife	s (glaciated regions)	
Formation Type:	Stratified Deposits, Und	ifferentiated	
Aquifer Type:	Unconfined single aquif	er Construction Date:	20020110
Well Depth:	162	Well Depth Units:	ft
vveli Hole Depth:	170	vveli Hole Depth Units:	π
G39 North 1/2 - 1 Mile Lower		FED	USGS USGS40000464269
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts V	Vater Science Center	
Monitor Location:	MA-TSW 89 TRURO,	MA Type:	Well
Description:	Not Reported	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquife	s (glaciated regions)	
Formation Type:	Outwash	Aquifer Type:	Unconfined single aquifer
Construction Date:	19570924	Well Depth:	21.7
Well Depth Units:	π	Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported		
Ground water levels.Number	of Measurements:	565 Level reading date:	2005-02-24
Feet below surface:	11.62	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	2004-12	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2004-11-23	Feet below surface:	12.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	2004-10-21	Feet below surface:	12.41
	Not Departed	Noto:	Not Poportod

Level reading date:
Feet to sea level:

Level reading date: Feet to sea level:

2004-09-30 Not Reported

2004-08-24 Not Reported

2004-07-27 Not Reported

2004-06-21 Not Reported

2004-05-20 Not Reported

2004-04-28 Not Reported

2004-03-24 Not Reported

2004-02-25 Not Reported

2003-12-23 Not Reported

2003-11-19 Not Reported

2003-10-21 Not Reported

2003-09-30 Not Reported

2003-08-26 Not Reported

2003-07-22 Not Reported

2003-06-24 Not Reported

2003-05-22 Not Reported

2003-04-25 Not Reported

2003-03-25 Not Reported

2003-02-27 Not Reported

2003-01-29 Not Reported

2002-12-19 Not Reported Feet below surface: Note: Feet below surface:

Note: Feet below surface:

Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note: 12.54 Not Reported

12.49 Not Reported

12.37 Not Reported

12.14 Not Reported

12.05 Not Reported

11.85 Not Reported

12.15 Not Reported

12.19 Not Reported

11.85 Not Reported

12.37 Not Reported

12.31 Not Reported

12.25 Not Reported

12.05 Not Reported

11.60 Not Reported

11.20 Not Reported

10.92 Not Reported

10.69 Not Reported

11.25 Not Reported

11.34 Not Reported

11.18 Not Reported

11.89 Not Reported

Level reading date:	2002-11-21	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-10-22	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-09-26	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-08-22	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-07-25	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-06-20	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-05-21	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-04-23	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-03-21	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-02-19	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2002-01-24	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-12-20	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-11-21	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-10-22	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-10-02	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-08-22	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-07-23	Feet below surface:	12
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-06-21	Feet below surface:	11
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-05-29	Feet below surface:	11
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-04-23	Feet below surface:	11
Feet to sea level:	Not Reported	Note:	No
Level reading date:	2001-03-28	Feet below surface:	11

Level reading date: Feet to sea level:

Not Reported

Feet below surface: Note:

2.11 ot Reported

2.46 ot Reported

2.53 ot Reported

2.61 ot Reported

2.38 ot Reported

2.23 ot Reported

2.30 ot Reported

2.51 ot Reported

2.59 ot Reported

2.45 ot Reported

2.50 ot Reported

2.75 ot Reported

2.90 ot Reported

2.54 ot Reported

2.38 ot Reported

2.42 ot Reported

2.26 ot Reported

.90 ot Reported

.69 ot Reported

.28 ot Reported

11.75 Not Reported

Level reading date:	2001-02-27	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-12-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-11-28	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-10-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-09-28	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-08-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-07-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-06-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-05-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-04-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-03-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-02-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	2000-01-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1999-12-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1999-11-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1999-10-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1999-09-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1999-08-24	Feet below surface:
Feet to sea level:	Not Reported	Note:

1999-07-21

1999-06-21

1999-05-20

Not Reported

Not Reported

Not Reported

Level reading date: Feet to sea level:

Level reading date: Feet to sea level:

Level reading date: Feet to sea level:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

12.08 Not Reported

12.30 Not Reported

12.25 Not Reported

12.52 Not Reported

12.47 Not Reported

12.23 Not Reported

12.00 Not Reported

11.71 Not Reported

11.44 Not Reported

11.65 Not Reported

12.00 Not Reported

12.28 Not Reported

12.25 Not Reported

12.36 Not Reported

12.38 Not Reported

12.46 Not Reported

12.53 Not Reported

12.49 Not Reported

12.51 Not Reported

12.28 Not Reported

12.01 Not Reported

Level reading date:	
Feet to sea level:	

Level reading date: Feet to sea level:

1999-04-27	
Not Reported	

1

1999-03-25 Not Reported

1999-02-23 Not Reported

1999-01-21 Not Reported

1998-12-21 Not Reported

1998-11-24 Not Reported

1998-10-21 Not Reported

1998-09-25 Not Reported

> 1998-08-25 Not Reported

1998-07-29 Not Reported

1998-06-25 Not Reported

1998-05-20 Not Reported

1998-04-22 Not Reported

1998-03-24 Not Reported

1998-02-26 Not Reported

1998-01-21 Not Reported

1997-12-19 Not Reported

1997-11-20 Not Reported

1997-10-29 Not Reported

1997-09-25 Not Reported

1997-08-26 Not Reported

Note: Feet below surface: Note:

Feet below surface:

Feet below surface: Note:

11.85 Not Reported

11.67 Not Reported

12.23 Not Reported

12.42 Not Reported

12.31 Not Reported

12.30 Not Reported

12.12 Not Reported

12.02 Not Reported

11.94 Not Reported

11.55 Not Reported

11.30 Not Reported

11.07 Not Reported

10.73 Not Reported

10.78 Not Reported

11.10 Not Reported

11.85 Not Reported

12.05 Not Reported

12.08 Not Reported

12.30 Not Reported

12.29 Not Reported

12.18 Not Reported

Level reading date:	1997-07-29	Feet below surface:	11.93
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-06-20	Feet below surface:	11.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-05-23	Feet below surface:	11.06
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-04-29	Feet below surface:	10.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-03-20	Feet below surface:	11.58
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-02-26	Feet below surface:	11.48
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1997-01-21	Feet below surface:	11.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-12-23	Feet below surface:	10.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-11-21	Feet below surface:	10.93
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-10-23	Feet below surface:	11.32
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-09-24	Feet below surface:	11.81
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-08-22	Feet below surface:	12.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-07-24	Feet below surface:	12.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-06-26	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-05-24	Feet below surface:	11.54
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-04-25	Feet below surface:	11.26
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-03-27	Feet below surface:	11.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-02-23	Feet below surface:	11.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1996-01-23	Feet below surface:	11.66
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1995-12-28	Feet below surface:	11.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1995-11-21	Feet below surface:	12.12

Note:

Feet to sea level:

Not Reported

Not Reported

Level reading date:
Feet to sea level:

Level reading date: Feet to sea level:

1995-10-20 Not Reported

1995-09-20 Not Reported

1995-08-25 Not Reported

1995-07-20 Not Reported

1995-06-23 Not Reported

1995-05-24 Not Reported

1995-04-24 Not Reported

1995-03-23 Not Reported

1995-02-23 Not Reported

1995-01-20 Not Reported

1994-12-20 Not Reported

1994-11-23 Not Reported

1994-10-25 Not Reported

1994-09-21 Not Reported

1994-08-24 Not Reported

1994-07-20 Not Reported

1994-06-22 Not Reported

1994-05-20 Not Reported

1994-04-20 Not Reported

1994-03-24 Not Reported

1994-02-22 Not Reported Feet below surface: Note:

Feet below surface: Note: 12.55 Not Reported

12.63 Not Reported

12.64 Not Reported

12.45 Not Reported

12.25 Not Reported

11.90 Not Reported

11.95 Not Reported

12.04 Not Reported

12.03 Not Reported

12.04 Not Reported

12.41 Not Reported

12.43 Not Reported

12.29 Not Reported

12.27 Not Reported

12.20 Not Reported

11.96 Not Reported

11.61 Not Reported

11.26 Not Reported

11.07 Not Reported

10.93 Not Reported

11.69 Not Reported

Level reading date:	1994-01-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-12-20	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-11-29	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-10-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-09-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-08-26	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-07-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-06-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-05-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-04-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-03-27	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-02-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1993-01-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-12-28	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-11-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-10-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-09-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-08-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1992-07-22	Feet below surface:
Feet to sea level:	Not Reported	Note:

1992-06-23

1992-05-21

Not Reported

Not Reported

Level reading date: Feet to sea level:

Level reading date: Feet to sea level:

Feet below surface:

Feet below surface:

Note:

Note:

11.57 Not Reported

11.78 Not Reported

12.38 Not Reported

12.35 Not Reported

12.38 Not Reported

12.35 Not Reported

11.96 Not Reported

11.59 Not Reported

11.17 Not Reported

10.99 Not Reported

11.47 Not Reported

11.83 Not Reported

12.08 Not Reported

12.03 Not Reported

12.45 Not Reported

12.50 Not Reported

12.56 Not Reported

12.36 Not Reported

12.06 Not Reported

11.82 Not Reported

12.09 Not Reported

Level reading date:	1992-04-22	Feet below surface:	11.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1992-03-20	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1992-02-20	Feet below surface:	11.92
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1992-01-22	Feet below surface:	11.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-12-20	Feet below surface:	12.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-11-20	Feet below surface:	12.13
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-10-22	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-09-25	Feet below surface:	12.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-08-27	Feet below surface:	12.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-07-25	Feet below surface:	12.43
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-06-21	Feet below surface:	12.15
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-05-21	Feet below surface:	11.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-04-25	Feet below surface:	11.84
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-03-27	Feet below surface:	11.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-02-26	Feet below surface:	12.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1991-01-28	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1990-12-26	Feet below surface:	12.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1990-11-28	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1990-10-25	Feet below surface:	12.51
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1990-09-20	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1990-08-29	Feet below surface:	12.48

Note:

Feet to sea level:

Not Reported

Not Reported

Level reading date:
Feet to sea level:

Level reading date: Feet to sea level:

1990-07-25 Not Reported

1990-06-22 Not Reported

1990-05-24 Not Reported

1990-04-24 Not Reported

1990-03-26 Not Reported

1990-02-21 Not Reported

1990-01-23 Not Reported

1989-12-27 Not Reported

> 1989-11-27 Not Reported

1989-10-26 Not Reported

1989-08-22 Not Reported

1989-07-24 Not Reported

1989-06-27 Not Reported

1989-05-24 Not Reported

1989-04-25 Not Reported

1989-03-23 Not Reported

1989-02-22 Not Reported

1989-01-25 Not Reported

1988-12-21 Not Reported

1988-11-23 Not Reported

1988-10-27 Not Reported Feet below surface: Note: Feet below surface:

Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note:

Feet below surface: Note: 12.27 Not Reported

12.14 Not Reported

12.19 Not Reported

12.35 Not Reported

12.38 Not Reported

12.34 Not Reported

12.31 Not Reported

12.57 Not Reported

12.35 Not Reported

12.35 Not Reported

12.22 Not Reported

12.04 Not Reported

12.02 Not Reported

11.96 Not Reported

12.00 Not Reported

12.51 Not Reported

12.53 Not Reported

12.37 Not Reported

12.22 Not Reported

12.46 Not Reported

12.47 Not Reported

Level reading date:	1988-09-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-08-26	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-07-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-06-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-05-26	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-04-26	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-03-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-02-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1988-01-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-12-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-11-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-10-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-09-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-08-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-07-21	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-06-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-05-20	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-04-23	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-03-25	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1987-01-28	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1986-12-24	Feet below surface:
Feet to sea level:	Not Reported	Note:

below surface: 11.98 Not Reported : below surface: 11.71 Not Reported below surface: 11.74 Not Reported below surface: 11.82 Not Reported 12.18 below surface: Not Reported 11.98 below surface: Not Reported below surface: 12.15 Not Reported below surface: 12.18 Not Reported 11.97 below surface: Not Reported below surface: 12.02 Not Reported below surface: 11.53 Not Reported below surface: 11.11 Not Reported 10.59 below surface: Not Reported below surface: 10.89 Not Reported below surface: 11.08 Not Reported 11.23 below surface: Not Reported 12.00 below surface: Not Reported TC7228749.1s Page A-78

12.66

12.58 Not Reported

12.35

12.14

Not Reported

Not Reported

Not Reported

Level reading date:	1986-11-25	Feet below surface:	12.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-10-22	Feet below surface:	12.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-09-23	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-08-20	Feet below surface:	12.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-07-28	Feet below surface:	12.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-06-24	Feet below surface:	12.07
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-05-21	Feet below surface:	11.92
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-04-25	Feet below surface:	11.86
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-03-24	Feet below surface:	11.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-02-24	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1986-01-28	Feet below surface:	12.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-12-20	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-11-22	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-10-23	Feet below surface:	12.06
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-09-25	Feet below surface:	11.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-08-22	Feet below surface:	12.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-07-23	Feet below surface:	12.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-06-24	Feet below surface:	12.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-05-20	Feet below surface:	12.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-04-23	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-03-21	Feet below surface:	12.32
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1985-02-22	Feet below surface:	12.22
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1985-01-24	Feet below surface:	12.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-12-19	Feet below surface:	12.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-11-27	Feet below surface:	12.17
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-10-26	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-09-25	Feet below surface:	12.30
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-08-21	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-07-25	Feet below surface:	11.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-07-03	Feet below surface:	11.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-05-22	Feet below surface:	11.01
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-04-25	Feet below surface:	10.79
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-03-26	Feet below surface:	11.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-02-27	Feet below surface:	11.79
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1984-01-25	Feet below surface:	12.01
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-12-27	Feet below surface:	11.88
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-11-22	Feet below surface:	12.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-10-25	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-09-26	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-08-25	Feet below surface:	12.14
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-07-25	Feet below surface:	11.84
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-06-22	Feet below surface:	11.27
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1983-05-26	Feet below surface:	10.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-04-25	Feet below surface:	10.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-03-23	Feet below surface:	10.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-02-23	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1983-01-26	Feet below surface:	12.33
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-12-22	Feet below surface:	12.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-11-23	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-10-25	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-09-23	Feet below surface:	12.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-08-27	Feet below surface:	12.21
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-07-26	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-06-25	Feet below surface:	11.58
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-05-26	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-04-26	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-03-23	Feet below surface:	12.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-02-23	Feet below surface:	11.97
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1982-01-25	Feet below surface:	12.06
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-12-29	Feet below surface:	11.97
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-11-21	Feet below surface:	12.58
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-10-27	Feet below surface:	12.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-09-25	Feet below surface:	12.59
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1981-08-26	Feet below surface:	12.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-07-28	Feet below surface:	12.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-06-25	Feet below surface:	12.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-05-26	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-04-22	Feet below surface:	11.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-03-24	Feet below surface:	11.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-03-18	Feet below surface:	11.78
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-02-24	Feet below surface:	12.62
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-02-04	Feet below surface:	12.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1981-01-26	Feet below surface:	12.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-12-21	Feet below surface:	12.45
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-12-17	Feet below surface:	12.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-11-23	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-11-13	Feet below surface:	12.78
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-10-27	Feet below surface:	12.70
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-10-08	Feet below surface:	12.85
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-09-24	Feet below surface:	12.84
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-09-10	Feet below surface:	12.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-08-24	Feet below surface:	12.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-08-17	Feet below surface:	12.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-07-28	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1980-07-10	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-06-25	Feet below surface:	12.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-06-12	Feet below surface:	12.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-05-23	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-05-08	Feet below surface:	12.07
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-04-27	Feet below surface:	12.04
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-04-09	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-03-26	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-03-19	Feet below surface:	12.26
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-02-25	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-02-21	Feet below surface:	12.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1980-01-28	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-12-22	Feet below surface:	12.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-11-26	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-11-25	Feet below surface:	12.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-11-14	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-10-29	Feet below surface:	12.38
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-10-22	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-09-25	Feet below surface:	12.45
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-08-28	Feet below surface:	12.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-08-20	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1979-07-27	Feet below surface:	12.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-07-19	Feet below surface:	11.85
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-06-28	Feet below surface:	11.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-06-24	Feet below surface:	11.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-06-14	Feet below surface:	11.70
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-05-28	Feet below surface:	11.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-05-03	Feet below surface:	11.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-04-25	Feet below surface:	11.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-03-27	Feet below surface:	11.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-02-27	Feet below surface:	11.43
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1979-01-24	Feet below surface:	11.81
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-12-26	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-11-27	Feet below surface:	12.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-10-27	Feet below surface:	12.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-10-13	Feet below surface:	12.38
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-09-25	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-09-21	Feet below surface:	12.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-08-24	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-08-17	Feet below surface:	12.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-08-03	Feet below surface:	12.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-07-27	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1978-07-19	Feet below surface:	12.10
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-06-28	Feet below surface:	11.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-05-25	Feet below surface:	11.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-04-25	Feet below surface:	11.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-03-24	Feet below surface:	10.88
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-02-27	Feet below surface:	10.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1978-01-26	Feet below surface:	10.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-12-27	Feet below surface:	11.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-11-28	Feet below surface:	11.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-10-27	Feet below surface:	11.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-09-27	Feet below surface:	12.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-08-25	Feet below surface:	12.49
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-07-26	Feet below surface:	12.32
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-06-23	Feet below surface:	12.02
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-05-25	Feet below surface:	12.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-04-26	Feet below surface:	11.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-03-29	Feet below surface:	11.93
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-02-23	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1977-01-26	Feet below surface:	12.01
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-12-27	Feet below surface:	12.58
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-11-29	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1976-10-27	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-09-28	Feet below surface:	12.69
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-08-26	Feet below surface:	12.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-07-27	Feet below surface:	12.48
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-06-28	Feet below surface:	12.27
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-05-25	Feet below surface:	11.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-04-28	Feet below surface:	11.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-03-24	Feet below surface:	11.32
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-02-25	Feet below surface:	11.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1976-01-29	Feet below surface:	11.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-12-29	Feet below surface:	11.68
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-11-24	Feet below surface:	11.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-10-29	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-09-29	Feet below surface:	12.38
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-09-25	Feet below surface:	12.43
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-08-26	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-08-19	Feet below surface:	12.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-07-23	Feet below surface:	12.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-07-22	Feet below surface:	12.38
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-06-25	Feet below surface:	12.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-05-28	Feet below surface:	11.89
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1975-05-19	Feet below surface:	11.91
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-04-29	Feet below surface:	11.64
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-04-24	Feet below surface:	11.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-03-26	Feet below surface:	11.79
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-03-24	Feet below surface:	12.26
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-02-25	Feet below surface:	11.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-02-19	Feet below surface:	12.01
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1975-01-29	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-12-27	Feet below surface:	12.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-12-17	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-11-26	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-11-23	Feet below surface:	12.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-10-29	Feet below surface:	12.56
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-10-22	Feet below surface:	12.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-09-26	Feet below surface:	12.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-09-16	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-08-28	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-08-13	Feet below surface:	12.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-07-30	Feet below surface:	12.21
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-07-10	Feet below surface:	12.14
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-06-26	Feet below surface:	11.94
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1974-05-29	Feet below surface:	11.74
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-05-15	Feet below surface:	11.74
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-25	Feet below surface:	11.64
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-07	Feet below surface:	11.71
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-28	Feet below surface:	11.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-13	Feet below surface:	11.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-26	Feet below surface:	11.49
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-21	Feet below surface:	11.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-29	Feet below surface:	11.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	11.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-12-20	Feet below surface:	11.81
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-28	Feet below surface:	12.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	12.14
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-17	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-27	Feet below surface:	12.07
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-12	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-28	Feet below surface:	12.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-27	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-17	Feet below surface:	11.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-27	Feet below surface:	11.72
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1973-06-13	Feet below surface:	11.56
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-25	Feet below surface:	11.30
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	11.24
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-26	Feet below surface:	11.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	11.02
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-27	Feet below surface:	11.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	11.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-26	Feet below surface:	11.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	11.16
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-01-26	Feet below surface:	11.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-12-27	Feet below surface:	11.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-27	Feet below surface:	11.49
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-10	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-10-26	Feet below surface:	11.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-09-27	Feet below surface:	11.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-08-29	Feet below surface:	12.10
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-07-27	Feet below surface:	11.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-27	Feet below surface:	11.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	11.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-25	Feet below surface:	11.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-04-26	Feet below surface:	11.46
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1972-04-07	Feet below surface:	11.54
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-03-28	Feet below surface:	11.66
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-02-25	Feet below surface:	12.13
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-01-27	Feet below surface:	12.33
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-12-27	Feet below surface:	12.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-11-26	Feet below surface:	12.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-10-27	Feet below surface:	12.69
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-09-27	Feet below surface:	12.66
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-08-26	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-07-28	Feet below surface:	12.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-06-25	Feet below surface:	11.93
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-05-24	Feet below surface:	11.71
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-04-27	Feet below surface:	11.62
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-03-26	Feet below surface:	11.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-02-24	Feet below surface:	11.78
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1971-01-27	Feet below surface:	11.85
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-12-28	Feet below surface:	11.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-11-24	Feet below surface:	12.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-10-28	Feet below surface:	12.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-09-28	Feet below surface:	12.58
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-08-27	Feet below surface:	12.48
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1970-07-29	Feet below surface:	12.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-06-26	Feet below surface:	11.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-05-20	Feet below surface:	11.47
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-04-24	Feet below surface:	11.04
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-03-25	Feet below surface:	11.36
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-02-24	Feet below surface:	11.11
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1970-01-26	Feet below surface:	11.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-12-30	Feet below surface:	11.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-11-25	Feet below surface:	11.88
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-10-29	Feet below surface:	12.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-09-26	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-08-27	Feet below surface:	12.41
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-07-29	Feet below surface:	12.23
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-06-27	Feet below surface:	11.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-05-26	Feet below surface:	11.48
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-04-28	Feet below surface:	11.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-03-27	Feet below surface:	10.89
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-02-26	Feet below surface:	11.62
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1969-01-27	Feet below surface:	12.06
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1968-12-26	Feet below surface:	12.14
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1968-11-25	Feet below surface:	12.26
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date: Feet to sea level:	1968-10-29 Not Reported	Feet below surface: Note:	12.60 Not Reported
Level reading date: Feet to sea level:	1968-09-25 Not Reported	Feet below surface: Note:	12.68 Not Reported
Level reading date: Feet to sea level:	1968-08-27 Not Reported	Feet below surface: Note:	12.62 Not Reported
Level reading date: Feet to sea level:	1968-07-26 Not Reported	Feet below surface: Note:	12.36 Not Reported
Level reading date: Feet to sea level:	1968-06-26 Not Reported	Feet below surface: Note:	12.09 Not Reported
Level reading date: Feet to sea level:	1968-05-27 Not Reported	Feet below surface: Note:	11.93 Not Reported
Level reading date: Feet to sea level:	1968-04-22 Not Reported	Feet below surface: Note:	11.73 Not Reported
Level reading date: Feet to sea level:	1968-03-27 Not Reported	Feet below surface: Note:	11.65 Not Reported
Level reading date: Feet to sea level:	1968-02-27 Not Reported	Feet below surface: Note:	11.99 Not Reported
Level reading date: Feet to sea level:	1968-01-29 Not Reported	Feet below surface: Note:	12.07 Not Reported
Level reading date: Feet to sea level:	1967-12-26 Not Reported	Feet below surface: Note:	12.15 Not Reported
Level reading date:	1967-11-27 Not Reported	Feet below surface:	12.20 Not Reported
Level reading date:	1967-10-26 Not Reported	Feet below surface:	12.29 Not Reported
Level reading date:	1967-09-27 Not Reported	Feet below surface:	12.16
Level reading date:	1967-08-23	Feet below surface:	11.80
Level reading date:	1967-08-22	Feet below surface:	11.74
Level reading date:	Not Reported	Note: Feet below surface:	11.58
Level reading date:	1967-07-26	Note: Feet below surface:	11.30
Level reading date:	1967-06-27	Note: Feet below surface:	10.71
Level reading date:	тот керопеа 1967-05-24	Note: Feet below surface:	11.31
Level reading date:	1967-04-25 Not Reported	Note: Feet below surface: Note:	11.28

Level reading date:	1967-03-29	Feet below surface:	11.49
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1967-02-28	Feet below surface:	12.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1967-01-27	Feet below surface:	12.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-12-21	Feet below surface:	12.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-11-28	Feet below surface:	12.12
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-11-26	Feet below surface:	12.18
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-10-25	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-09-27	Feet below surface:	12.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-08-25	Feet below surface:	12.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-07-22	Feet below surface:	12.50
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-06-23	Feet below surface:	12.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-05-29	Feet below surface:	12.56
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-04-25	Feet below surface:	12.45
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-03-21	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-02-28	Feet below surface:	12.37
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1966-01-31	Feet below surface:	12.44
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-12-26	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-11-23	Feet below surface:	12.67
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-10-27	Feet below surface:	12.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-09-28	Feet below surface:	12.96
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-08-26	Feet below surface:	12.95
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1965-07-28	Feet below surface:	12.80
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-06-28	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-05-28	Feet below surface:	12.60
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-04-27	Feet below surface:	12.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-03-29	Feet below surface:	12.30
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-02-28	Feet below surface:	12.25
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1965-01-29	Feet below surface:	12.29
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-12-29	Feet below surface:	12.45
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-11-24	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-10-27	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-09-28	Feet below surface:	12.70
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-09-01	Feet below surface:	12.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-07-29	Feet below surface:	12.45
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-06-30	Feet below surface:	12.19
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-05-27	Feet below surface:	11.88
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-04-28	Feet below surface:	11.79
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-03-30	Feet below surface:	11.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-02-28	Feet below surface:	11.71
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1964-01-31	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-12-30	Feet below surface:	12.07
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-12-02	Feet below surface:	12.11
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1963-10-25	Feet below surface:	12.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-09-30	Feet below surface:	12.53
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-08-29	Feet below surface:	12.56
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-07-31	Feet below surface:	12.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-06-28	Feet below surface:	12.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-05-29	Feet below surface:	11.77
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-04-30	Feet below surface:	11.46
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-04-01	Feet below surface:	11.34
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-02-28	Feet below surface:	11.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1963-01-31	Feet below surface:	11.57
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1962-12-28	Feet below surface:	11.62
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1962-11-29	Feet below surface:	11.61
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1962-10-30	Feet below surface:	11.90
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1962-09-26	Feet below surface:	12.54
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1957-09-24	Feet below surface:	13.38
Feet to sea level:	Not Reported	Note:	Not Reported

G40 North 1/2 - 1 Mile Lower

Organization ID: Organization Name: Monitor Location: Description: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:

USGS-MA USGS Massachusetts Water Science Center MA-TSW 241 Type: USED AS AUXILIARY WELL FOR TSW 89 01090002 Drainage Area: Not Reported Contrib Drainage Area: Not Reported Aquifer: Not Reported Aquifer Type: 19891113 Well Depth: Well Hole Depth: ft ft

FED USGS

USGS40000464270

Well

Not Reported Not Reported Not Reported Unconfined single aquifer 26.15 30

Ground water levels,Number o Feet below surface: Note:	f Measurements: 3 14.16 Not Reported	Level reading date: Feet to sea level:	1990-04-24 Not Reported
Level reading date: Feet to sea level:	1990-03-26 Not Reported	Feet below surface: Note:	14.20 Not Reported
Level reading date: Feet to sea level:	1990-02-21 Not Reported	Feet below surface: Note:	14.15 Not Reported
41 East 1/2 - 1 Mile Higher		MA V	VELLS MA900000002567
PWS ID:	4242000	Site Name:	NORTH UNION FIELD WELL NO. 2
Туре:	Community Groundwater Well		
Facility Name:	Not Reported	SubBasin:	CAPE COD
Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	DOQ WF MS_OTH Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	100 MAP MS_LMTQ
Source ID: Source Name: PWS Status: PWS Class:	4242000-07G NORTH UNION FIELD WELL NO. A COM	PWS Name: 2 Source Status: Source Availability:	PROVINCETOWN WATER DEPARTMENT A ACTIVE
Well Name: Purveyor: Basin:	NORTH UNION FIELD WELL NO. PROVINCETOWN WATER DEPA BLACKSTONE	2 RTMENT Region:	4
42 NW 1/2 - 1 Mile Lower		FED	USGS USGS40000464170
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachusetts Water Scier MA-TSW 141 Not Reported Not Reported Sand and gravel aquifers (glaciate Not Reported 19720518 ft ft	nce Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: d regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 01090002 Not Reported Not Reported 13.3 13.3
Ground water levels,Number o Feet below surface: Note:	of Measurements: 19 1.28 Not Reported	Level reading date: Feet to sea level:	1975-05-21 Not Reported
Level reading date:	1974-09-04	Feet below surface:	2.51

Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-05-15	Feet below surface:	0.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-07	Feet below surface:	0.98
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-13	Feet below surface:	0.85
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-21	Feet below surface:	0.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-30	Feet below surface:	0.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	0.73
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	1.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-18	Feet below surface:	1.09
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-13	Feet below surface:	1.00
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	0.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-14	Feet below surface:	0.67
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	0.55
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	0.87
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	0.65
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-10	Feet below surface:	0.73
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	0.76
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-18	Feet below surface:	0.55
Feet to sea level:	Not Reported	Note:	Not Reported

F43 East 1/2 - 1 Mile Higher

> PWS ID: Type: Facility Name:

4242000 Community Groundwater Well Not Reported Site Name:

SubBasin:

NORTH UNION FIELD WELL NO. 1

MA90000002566

CAPE COD

MA WELLS

Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	DOQ WF MS_OTH Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	100 MAP MS_LMTQ
Source ID:	4242000-06G	PWS Name:	PROVINCETOWN WATER DEPARTMENT
Source Name: PWS Status: PWS Class:	NORTH UNION FIELD WELL NO. A COM	1 Source Status: Source Availability:	A ACTIVE
Well Name: Purveyor:	NORTH UNION FIELD WELL NO. PROVINCETOWN WATER DEPAF	1 RTMENT	
Basin:	UNK	Region:	4
44 South 1/2 - 1 Mile Lower		FED	USGS USGS40000463837
Organization Name:	USGS Massachusetts Water Scien	ce Center	
Monitor Location:	MA-TSW/ 161		Well
Description:	Not Reported	НИС	01090002
Drainage Area:	Not Reported	Drainage Area Linits:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (glaciated	t regions)	Not Reported
Formation Type:	Not Reported	Aquifer Type	Not Reported
Construction Date:	19720519	Well Depth:	9.5
Well Depth Units:	ft	Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported		
Ground water levels,Number of	of Measurements: 4	Level reading date:	1973-02-08
Feet below surface:	6.66	Feet to sea level:	Not Reported
Note:	Not Reported		
Level reading date:	1972-11-10	Feet below surface:	6.39
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	6.94
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-19	Feet below surface:	6.71
Feet to sea level:	Not Reported	Note:	Not Reported
45 NE 1/2 - 1 Mile		FED	USGS USGS40000464215

1/2 - 1 N Lower

Organization ID:USGS-MAOrganization Name:USGS Massachusetts Water ScienceMonitor Location:MA-TSW 153Description:Not ReportedDrainage Area:Not ReportedContrib Drainage Area:Not ReportedAquifer:Sand and gravel aquifers (glaciated re

USGS Massachusetts Water Science Center MA-TSW 153 Type: Well Not Reported HUC: 01090002 Not Reported Drainage Area Units: Not Reported Not Reported Contrib Drainage Area Units: Not Reported Sand and gravel aquifers (glaciated regions)

TC7228749.1s Page A-98

Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Not Reported 19720525 ft ft		Aquifer Type: Well Depth: Well Hole Depth:	Not Reported 45.4 45.4
Ground water levels,Number of M Feet below surface: Note:	leasurements: 39.08 Not Reported	71	Level reading date: Feet to sea level:	1980-08-17 Not Reported
Level reading date:	1980-07-10		Feet below surface:	38.84
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1980-06-12		Feet below surface:	38.68
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1980-05-08		Feet below surface:	38.51
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1980-04-09		Feet below surface:	38.64
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1980-03-19		Feet below surface:	38.82
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1980-02-21		Feet below surface:	38.79
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-11-26		Feet below surface:	38.85
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-11-14		Feet below surface:	38.79
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-10-22		Feet below surface:	38.70
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-10-09		Feet below surface:	38.66
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-08-20		Feet below surface:	38.17
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-07-19		Feet below surface:	39.57
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-06-28		Feet below surface:	39.01
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-06-14		Feet below surface:	37.90
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1979-05-03		Feet below surface:	38.92
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1978-10-13		Feet below surface:	38.60
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1978-09-21		Feet below surface:	38.52
Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:	1978-08-17		Feet below surface:	38.36

Feet to sea level:	Not Reported	Note:
Level reading date:	1978-08-03 Not Reported	Feet below surface:
reet to sea level.	Not Reported	Note.
Level reading date: Feet to sea level:	1977-05-31 Not Reported	Feet below surface: Note:
Level reading date:	1977-04-11	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1977-03-01	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-12-06	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-10-29	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-10-04	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-08-31	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-08-03	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-07-02	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-05-24	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-04-28	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-04-05	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-03-01	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1976-01-29	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-12-29	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-11-26	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-10-22	Feet below surface:
Feet to sea level:	Not Reported	Note:
Level reading date:	1975-09-29	Feet below surface:
Feet to sea level:	Not Reported	Note:

1975-08-19

Not Reported

Level reading date: Feet to sea level:

Feet

TC7228749.1s Page A-100

Not Reported

38.30 Not Reported

38.75 Not Reported

38.68 Not Reported

38.46 Not Reported

39.26 Not Reported

39.15 Not Reported

39.27 Not Reported

39.20 Not Reported

39.17 Not Reported

38.80 Not Reported

37.93 Not Reported

37.92 Not Reported

37.69 Not Reported

37.54 Not Reported

38.81 Not Reported

38.40 Not Reported

38.68 Not Reported

38.90 Not Reported

39.15 Not Reported

39.21 Not Reported

Feet below surface:

Note:

Level reading date:	1975-07-22	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-06-25	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-05-19	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-04-24	Feet below surface:	4(
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-03-24	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-02-19	Feet below surface:	33
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1975-01-17	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-12-17	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-11-23	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-10-22	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-09-16	Feet below surface:	39
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-08-14	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-07-10	Feet below surface:	33
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-05-15	Feet below surface:	3
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-04-08	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-03-13	Feet below surface:	3
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-02-19	Feet below surface:	3
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-01-28	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1974-01-02	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1973-11-20	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N
Level reading date:	1973-10-17	Feet below surface:	38
Feet to sea level:	Not Reported	Note:	N

39.04 Not Reported

38.69 Not Reported

38.38 Not Reported

40.29 Not Reported

38.50 Not Reported

38.85 Not Reported

39.02 Not Reported

39.05 Not Reported

39.11 Not Reported

39.06 Not Reported

39.16 Not Reported

38.95 Not Reported

38.47 Not Reported

37.96 Not Reported

38.70 Not Reported

37.80 Not Reported

37.84 Not Reported

38.05 Not Reported

38.35 Not Reported

38.64

Not Reported

38.62 Not Reported
Level reading date:	1973-09-12	Feet below surface:	38.63
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	38.52
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-17	Feet below surface:	38.17
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-13	Feet below surface:	37.75
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	37.42
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-04-13	Feet below surface:	37.40
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-03-14	Feet below surface:	37.69
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-02-08	Feet below surface:	37.37
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-11-11	Feet below surface:	38.28
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	38.05
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-31	Feet below surface:	38.04
Feet to sea level:	Not Reported	Note:	Not Reported

H46 SSE 1/2 - 1 Mile Higher

PWS ID: Type: SubBasin:

Basemap: Feature Type: Primary Location Source: Tertiary Location Source:

Source ID: Source Name: Source Status: Source Availability: 4300026 Transient Non-Community CAPE COD

NA GW SV Not Reported

4300026-02G WELL #2 A ACTIVE Site Name: Facility Name:

Accuracy Estimate (ft): Location Method: Secondary Location Source:

PWS Name: PWS Status: PWS Class: Not Reported

TRURO MOTOR INN

Not Reported

16

GP_2

MA900000001955

TRURO MOTOR INN A NC

MA WELLS

Map ID Direction				
Elevation		Data	ıbase	EDR ID Number
H47 SSE 1/2 - 1 Mile Higher		ΜΑ ν	VELLS	MA900000003627
PWS ID: Type: SubBasin:	4300026 Transient Non-Community CAPE COD	Site Name: Facility Name:	TRUF Not R	RO MOTOR INN Reported
Basemap: Feature Type: Primary Location Source: Tertiary Location Source:	NA GW SV Not Reported	Accuracy Estimate (ft): Location Method: Secondary Location Source:	100 GP_6 Not R	eported
Source ID: Source Name: Source Status: Source Availability:	4300026-01G WELL #1 A ACTIVE	PWS Name: PWS Status: PWS Class:	TRUF A NC	RO MOTOR INN
48 SE 1/2 - 1 Mile Higher		FED	USGS	USGS40000463868
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Sci MA-TSW 289 CCC OBS WELL A7 Not Reported Not Reported Sand and gravel aquifers (glacia Stratified Deposits, Undifferentia Unconfined single aquifer 63 63	Type: Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ted regions) ted Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R Not R 20020 ft ft	0002 leported leported
49 North 1/2 - 1 Mile Lower		FED	USGS	USGS40000464319
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	USGS-MA USGS Massachusetts Water Sci MA-TSW 149 Not Reported Not Reported Sand and gravel aquifers (glacia Not Reported 19720529 ft Not Reported	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: ted regions) Aquifer Type: Well Depth: Well Hole Depth:	Well 01090 Not R Not R 43.2 Not R	0002 leported leported leported leported

Note:Not ReportedLevel reading date:1974-09-04 Not ReportedFeet below surface:32.25 Not ReportedFeet to sea level:Not ReportedNote:35.25Feet to sea level:Not ReportedNote:36.25Feet to sea level:1974-08-13 Not ReportedFeet below surface:34.44 Note:Feet to sea level:1974-07-10 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-03-07 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.96 Not Rep	Ground water levels,Number of N Feet below surface:	Measurements: 34.78	24	Level reading date: Feet to sea level:	1975-05-21 Not Reported
Level reading date:1974-09-04 Not ReportedFeet below surface:35.25 Not ReportedLevel reading date:1974-08-13 Not ReportedFeet bose surface:Not ReportedLevel reading date:1974-07-10 Not ReportedFeet bose surface:34.84 Not ReportedLevel reading date:1974-07-10 Not ReportedFeet bose surface:34.45 Not ReportedLevel reading date:1974-07-17 Not ReportedFeet bolow surface:34.44 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet bolow surface:34.44 Not ReportedLevel reading date:1974-03-13 Not ReportedFeet bolow surface:34.31 	Note:	Not Reported			
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-08-13ReportedNote:Not ReportedLevel reading date:1974-07-10Feet below surface:34.84Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-07-15Feet below surface:34.45Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-06-15Feet below surface:34.44Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-03-13Feet below surface:34.31Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-02-19Note:Not ReportedLevel reading date:1974-01-28Feet below surface:34.39Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-01-02Feet below surface:34.95Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-01-72Feet below surface:34.96Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-01-72Feet below surface:34.96Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-01-72Feet below surface:34.96Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1	Level reading date:	1974-09-04		Feet below surface:	35.25
Level reading date:1974-08-13 Not ReportedFeet below surface:35.25 Not ReportedLevel reading date:1974-07-10 Not ReportedFeet below surface:34.84 Not ReportedLevel reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.41 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedNote:Not ReportedLevel reading date:1974-01-29 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-01-28 Not ReportedNote:Not ReportedLevel reading date:1974-01-28 Not ReportedNote:Not ReportedLevel reading date:1974-01-28 Not ReportedNote:34.58 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-01-17 Not ReportedNote:Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.460 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.460 Note:Level reading date:1973-09-17 Not ReportedNote:Not ReportedLevel reading date:1973-09-13 Not ReportedNote: </td <td>Feet to sea level:</td> <td>Not Reported</td> <td></td> <td>Note:</td> <td>Not Reported</td>	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-07-10 Not ReportedFeet below surface:34.84 Not ReportedLevel reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-02-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-01-12 Not ReportedNote:Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-09-13 Not ReportedNote:Not Rep	Level reading date:	1974-08-13		Feet below surface:	35.25
Level reading date:1974-07-10 Not ReportedFeet below surface:34.84 Not ReportedLevel reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedNote:Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Note:Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1974-01-20 Not ReportedFeet below surface:34.56 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-08-14 Not ReportedNote:Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.60 Not ReportedLevel reading	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-05-15Feet below surface:34.45Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1974-04-07Feet below surface:34.31Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1974-03-13Feet below surface:34.31Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1974-02-19Feet below surface:34.23Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1974-01-28Feet below surface:34.39Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-01-02Feet below surface:34.95Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1973-10-17Feet below surface:34.96Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1973-09-12Feet below surface:34.99Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1973-07-17Feet below surface:34.90Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1973-07-15Feet below surface:34.90Feet to sea level:Not ReportedNote:Nut ReportedLevel reading date:1973-07-15	Level reading date:	1974-07-10		Feet below surface:	34.84
Level reading date:1974-05-15 Not ReportedFeet below surface:34.45 Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-03-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-20 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-09-12 Not ReportedNote:Not ReportedLevel reading date:1973-07-17 Not ReportedNote:34.49 Note:Level reading date:1973-07-17 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:34.40 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:34.60 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-03-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.33 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1974-01-20 Not ReportedFeet below surface:34.59 Not ReportedLevel reading date:1973-01-12 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:34.29 Note:Level reading date:1973-06-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:33.96 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:33.90	Level reading date:	1974-05-15		Feet below surface:	34.45
Level reading date:1974-04-07 Not ReportedFeet below surface:34.44 Not ReportedLevel reading date:1974-03-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.93 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:33.90 Not ReportedLevel reading date:1973-06-14 Not ReportedFeet below surface:33.90 Not ReportedLevel reading date:1973-06-15 Not Rep	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-03-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1974-01-20 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-17 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface: <t< td=""><td>Level reading date:</td><td>1974-04-07</td><td></td><td>Feet below surface:</td><td>34.44</td></t<>	Level reading date:	1974-04-07		Feet below surface:	34.44
Level reading date:1974-03-13 Not ReportedFeet below surface:34.31 Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-06-13 Not Rep	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.29 Note:Level reading date:1973-07-17 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.29	Level reading date:	1974-03-13		Feet below surface:	34.31
Level reading date:1974-02-19 Not ReportedFeet below surface:34.23 Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-01-02 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-01-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-17 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-09-17 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-09-17 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-06-15 Not ReportedFeet below surface:Not ReportedLevel reading date:1973-04-13 Not ReportedNote:Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:<	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-10-17 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.94 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.99 Note:Level reading date:1973-07-17 Not ReportedFeet below surface:34.99 Note:Level reading date:1973-07-17 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.90 Not ReportedLevel reading date:1973-07-17 Not ReportedNote:Not ReportedLevel	Level reading date:	1974-02-19		Feet below surface:	34.23
Level reading date:1974-01-28 Not ReportedFeet below surface:34.39 Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.92 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not Rep	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Note:Not ReportedLevel reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-17 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-08-14 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below s	Level reading date:	1974-01-28		Feet below surface:	34.39
Level reading date:1974-01-02 Not ReportedFeet below surface:34.58 Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface:34.95 Note:Level reading date:1973-10-17 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.96 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.94 Note:Level reading date:1973-09-12 Not ReportedFeet below surface:34.94 Note:Level reading date:1973-09-17 Not ReportedFeet below surface:34.99 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: </td <td>Feet to sea level:</td> <td>Not Reported</td> <td></td> <td>Note:</td> <td>Not Reported</td>	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-11-20 Not ReportedFeet below surface: Note:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface: Note:Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface: Not Reported34.96 Note:Level reading date:1973-09-12 Not ReportedFeet below surface: Not Reported34.94 Note:Level reading date:1973-09-12 Not ReportedFeet below surface: Not Reported34.94 Note:Level reading date:1973-07-07 Not ReportedFeet below surface: Note:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface: Note:34.60 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface: Note:33.95 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface: Note:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface: Note:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface: Note:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Note:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Note:33.85 Not Reported	Level reading date:	1974-01-02		Feet below surface:	34.58
Level reading date:1973-11-20 Not ReportedFeet below surface:34.95 Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-08-14 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.92 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-05-15 Not ReportedSeet below surface:33.95 Not ReportedLevel reading date:1973-05-16 Not ReportedNote:Not ReportedLevel reading date:1973-05-17 Not ReportedSeet below surface:33.95 Not ReportedLevel reading date:1973-05-16 Not ReportedNote:Not ReportedLevel reading date:1973-03-14 Not ReportedNote:Not ReportedLevel reading date:1973-02-08 Not ReportedSeet below surface: Note:33.85 Not Report	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Note:Not ReportedLevel reading date:1973-10-17 Not ReportedFeet below surface: Note:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface: Note:34.94 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface: Note:34.94 Not ReportedLevel reading date:1973-08-14 Not ReportedFeet below surface: Note:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface: Note:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface: Not Reported34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface: Not Reported33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface: Note:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface: Note:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface: Note:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Note:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Note:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Note:33.85 Not ReportedLevel reading date:1973-02-08 Not Reported	Level reading date:	1973-11-20		Feet below surface:	34.95
Level reading date:1973-10-17 Not ReportedFeet below surface:34.96 Not ReportedLevel reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedFeet to sea level:1973-08-14 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-09-12Feet below surface:34.94Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-08-14Feet below surface:34.89Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-07-17Feet below surface:34.60Level reading date:1973-07-17Feet below surface:34.29Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-06-13Feet below surface:34.29Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-05-15Feet below surface:33.95Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-04-13Feet below surface:33.80Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-03-14Feet below surface:34.22Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1973-10-17		Feet below surface:	34.96
Level reading date:1973-09-12 Not ReportedFeet below surface:34.94 Not ReportedLevel reading date:1973-08-14 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-08-14Feet below surface:34.89Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-07-17Feet below surface:34.60Feet to sea level:Not ReportedNot ReportedNote:Level reading date:1973-06-13Feet below surface:34.29Feet to sea level:Not ReportedNot ReportedNot ReportedLevel reading date:1973-05-15Feet below surface:33.95Feet to sea level:Not ReportedNot ReportedNot ReportedLevel reading date:1973-04-13Feet below surface:33.80Feet to sea level:Not ReportedNot ReportedNot ReportedLevel reading date:1973-03-14Feet below surface:34.22Feet to sea level:Not ReportedNot ReportedNot ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNot ReportedNote:Level reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1973-09-12		Feet below surface:	34.94
Level reading date:1973-08-14 Not ReportedFeet below surface:34.89 Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface: Not Reported33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Level reading date:	1973-08-14		Feet below surface:	34.89
Level reading date:1973-07-17 Not ReportedFeet below surface:34.60 Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Even roading date:Not ReportedNote:Not ReportedLevel reading date:1973-06-13 Not ReportedFeet below surface:34.29 Not ReportedLevel reading date:1973-05-15 Not ReportedFeet below surface:33.95 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Level reading date:	1973-07-17		Feet below surface.	34 60
Level reading date:1973-06-13 Not ReportedFeet below surface:34.29 Note:Level reading date:1973-05-15 Not ReportedFeet below surface:33.95 Note:Level reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-05-15Feet below surface:33.95Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-04-13Feet below surface:33.80Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-04-13Feet below surface:34.22Level reading date:1973-03-14Feet below surface:34.22Level reading date:1973-02-08Feet below surface:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1973-06-13		Feet below surface.	34 29
Level reading date:1973-05-15 Not ReportedFeet below surface:33.95 Note:Level reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-04-13 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Evel reading date:Not ReportedNote:Not ReportedLevel reading date:1973-04-13Feet below surface:33.80Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-03-14Feet below surface:34.22Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-03-14Feet below surface:34.22Level reading date:1973-02-08Feet below surface:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1973-05-15		Feet below surface.	33 95
Level reading date:1973-04-13 Not ReportedFeet below surface:33.80 Not ReportedLevel reading date:1973-03-14 Not ReportedFeet below surface:34.22 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not ReportedLevel reading date:1973-02-08 Not ReportedFeet below surface:33.85 Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Eevel reading date:Not ReportedNote:Not ReportedLevel reading date:1973-03-14Feet below surface:34.22Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1973-04-13		Feet below surface:	33.80
Level reading date:1973-03-14Feet below surface:34.22Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date:1973-03-14Feet below surface:54.22Feet to sea level:Not ReportedNote:Not ReportedLevel reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Level reading date:	1073-03-1/		Feet below surface:	34 22
Level reading date:1973-02-08Feet below surface:33.85Feet to sea level:Not ReportedNote:Not Reported	Feet to sea level:	Not Reported		Note:	Not Reported
Feet to sea level:Not ReportedNote:S3.65Not ReportedNote:Not Reported	l evel reading date:	1073-02-08		Feet below surface:	33.85
	Feet to sea level:	Not Reported		Note:	Not Reported
Level reading date: 1972-11-10 Feet below surface: 34.63	l evel reading date:	1972-11-10		Feet below surface:	34 63

Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-05	Feet below surface:	34.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-06-02	Feet below surface:	34.35
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1972-05-31	Feet below surface:	34.29
Feet to sea level:	Not Reported	Note:	Not Reported
50 NNW 1/2 - 1 Mile		ΜΑ Ν	/ELLS MA900000001405
Lower			
PWS ID:	4300033	Site Name:	BABES BAKERY AND RESTAURANT
Type: SubBasin:	Transient Non-Community CAPE COD	Facility Name:	Not Reported
Basemap:	NA	Accuracy Estimate (ft):	16
Feature Type:	GW	Location Method:	GP_2
Primary Location Source:	SV Not Reported	Secondary Location Source:	Not Reported
Ternary Eccanon Cource.	Not Reported		
Source ID:	4300033-01G	PWS Name:	BABES BAKERY AND RESTAURANT
Source Name:	WELL # 1	PWS Status:	A
Source Status:		PWS Class:	NC
Source Availability.	ACTIVE		
51 South			2221
1/2 - 1 Mile Lower		FED	03034000403000
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Water Scier	nce Center	NA/-11
Description:	Not Reported	Type: HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Sand and gravel aquifers (glaciate	d regions)	
Formation Type:	Not Reported	Aquifer Type:	Not Reported
Well Depth Units:	19730515 ft	Well Hole Depth:	Not Reported
Well Hole Depth Units:	Not Reported		Not Reported
Ground water levels,Number of	Measurements: 17	Level reading date:	1975-05-21
Feet below surface:	3.26 Not Reported	Feet to sea level:	Not Reported
Level reading date:	1974-09-04 Not Deported	Feet below surface:	3.62
reet to sea level:	νοι κεροπεα	NOTE:	ινοτ κεροπεά
Level reading date:	1974-08-14	Feet below surface:	3.62
Feet to sea level:	Not Reported	Note:	Not Reported

Level reading date:	1974-07-10	Feet below surface:	3.31
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-05-15	Feet below surface:	3.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-04-07	Feet below surface:	3.04
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-03-13	Feet below surface:	2.82
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-02-19	Feet below surface:	2.72
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-28	Feet below surface:	2.83
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1974-01-02	Feet below surface:	2.88
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-11-20	Feet below surface:	3.17
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-10-17	Feet below surface:	3.20
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-09-12	Feet below surface:	2.99
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-08-14	Feet below surface:	3.27
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-07-22	Feet below surface:	3.08
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-06-12	Feet below surface:	2.95
Feet to sea level:	Not Reported	Note:	Not Reported
Level reading date:	1973-05-15	Feet below surface:	2.68
Feet to sea level:	Not Reported	Note:	Not Reported

52 NE 1/2 - 1 Mile Higher

01 State: MA Epa region: MA4300001 Pwsid: Pwsname: ADVENTURE BOUND CAMPING, CC @ HORTONS Cityserved: Stateserved: Not Reported MA Zipserved: Not Reported Fipscounty: 25001 Status: Active Retpopsrvd: 438 Groundwater Pwssvcconn: Psource longname: 1 Pwstype: TNCWS Owner: Private Contact: WAYNE KLEKAMP ADVENTURE BOUND CAMPING, CC @ HORTON'S Contactorgname: Contactphone: 5084871847 Contactaddress1: Contactaddress2: 905 16TH PLACE Contactcity: VERO BEACH FL Contactstate: Contactzip: 32960 Pwsactivitycode: А

FRDS PWS

MA4300001

ADVENTURE BOUND CAMPING, INC.

PWS ID: PWS name: PWS city: PWS zip: Activity status: Date system deactivated: System name: System city: System zip:	MA4300001 ROBERT S HORTON NORTH TRURO 026520000 Active Not Reported HORTONS TRAILER PARK NORTH TRURO 026520000	PWS type: PWS address: PWS state: PWS ID: Date system activated: Retail population: System address: System state:	Mailing 71 SO. HIGHLAND ROAD MA MA4300001 9003 00000250 71 SO. HIGHLAND ROAD MA
Population served:	101 - 500 Persons	Treatment:	Untreated
Latitude:	420200	Longitude:	0700400
Violation id: State: Contamination code: Violation code: Rule code: Violation measur: State mcl: Cmp edt:	4 MA 3100 23 110 Not Reported Not Reported 12/31/2011	Orig code: Violation Year: Contamination Name: Violation name: Rule name: Unit of measure: Cmp bdt:	S 2011 Coliform (TCR) Monitoring, Routine Major (TCR) TCR Not Reported 10/01/2011
Violation ID: Enforcemnt FY: Enforcement Detail: Enforcement Category:	4 2012 St AO (w/o penalty) issued Formal	Orig Code: Enforcement Action:	S 02/29/2012

AREA RADON INFORMATION

State Database: MA Radon

Radon Test Results

County	% of sites>4 pCi/L	Median
BARNSTABLE	15	1.6

Federal EPA Radon Zone for BARNSTABLE County: 2

Note: Zone 1 indoor average level > 4 pCi/L. : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L. : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 02652

Number of sites tested: 1

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	Not Reported	Not Reported	Not Reported	Not Reported
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	1.900 pCi/L	100%	0%	0%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: MassDEP Telephone: 617-292-5907

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Massachusetts Geographic Information System (MassGIS) Datalayers Source: Executive Office of Environmental Affairs Telephone:

Public Water Supply Database

Telephone:

The Public Water Supply datalayer contains the locations of public community surface and groundwater supply sources and public non-community supply sources as defined in 310 CMR 22.00.

Areas of Critical Environmental Concern

Telephone:

The Areas of Critical Environmental Concern (ACEC) datalayer shows the location of areas that have been designated ACECs by the Secretary of Environmental Affairs. ACEC designation requires greater environmental review of certain kinds of proposed development under state jurisdiction within the ACEC boundaries. The ACEC Program is administered by the Department of Environmental Management (DEM) on behalf of the Secretary of Environmental Affairs. The Massachusetts Coastal Zone Management (MCZM) Office managed the original Coastal ACEC Program from 1978 to 1993, and continues to play a key role in monitoring coastal ACECs. Procedures for ACEC designation and the general policies governing the effects of designation are contained in the ACEC regulations (301 CMR 12.00). The ACEC datalayer has been compiled by MCZM and DEM and includes both coastal and inland areas.

EPA Designated Sole Source Aquifers

Telephone:

The Sole Source Aquifer datalayer was compiled by the Department of Environmental Protection (DEP) Division of Water Supply (DWS). Seven Sole Source Aquifers have been designated by the US Environmental Protection Agency (EPA) for Massachusetts. A Sole Source Aquifer (SSA) is an aquifer designated by US EPA as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for that area and for which there are no reasonably available alternative sources should that aquifer become contaminated. The aquifers were defined by an EPA hydrogeologist.

Aquifers

Telephone:

MassGIS produced an aquifer datalayer composed of 20 individual panels, generally based on the boundaries of the major drainage basins. Areas of high and medium yield were mapped. This datalayer includes polygon attribute coding to help in the identification of areas in which cleanup of hazardous waste sites must meet drinking water standards, as defined in the Massachusetts Contingency Plan (MCP) (310 CMR 40.00000).

PHYSICAL SETTING SOURCE RECORDS SEARCHED

Non-Potential Drinking Water Source Areas

Telephone:

Non-Potential Drinking Water Source Areas (NPDWSA) are regulatory in nature representing one of many considerations used in determining the standards to which ground water must be cleaned in the event of a release of oil or hazardous material. NPDWSAs are not based on existing water quality and do not indicate poor ambient conditions.

DEP Approved Zone IIs

Telephone:

The Department of Environmental Protection (DEP) approved Zone IIs datalayer was compiled by the DEP Division of Water Supply (DWS). The database contains 281 approved Zone IIs statewide. As stated in 310 CMR 22.02, a Zone II is 'that area of an aquifer which contributes water to a well under the most severe pumping and recharge conditions that can be realistically anticipated (180 days of pumping at safe yield, with no recharge from precipitation.) It is bounded by the groundwater divides which result from pumping the well and by the contact of the aquifer with less permeable materials such as till or bedrock. In some cases, streams or lakes may act as recharge boundaries. In all cases, Zone IIs shall extend up gradient to its point of intersection with prevailing hydrogeologic boundaries (a groundwater flow divide, a contact with till or bedrock, or a recharge boundary).' These data are used in association with the Public Water Supplies datalayer. The following describes certain unique features of this association.\n - Any proposed new well which will pump at least 100,000 gallons per day must have a Zone II delineation completed and approved by DEP prior to the well coming on line. \n - Additionally, a new source may not be on-line yet, but other, older wells may fall within its Zone II boundary.\n - Further, existing wells must have a Zone II delineated as a condition of receiving a water withdrawal permit under the Water Management Act.

OTHER STATE DATABASE INFORMATION

RADON

State Database: MA Radon Source: Department of Health Telephone: 413-586-7525 Radon Test Results

Area Radon Information Source: USGS Telephone: 703-356-4020 The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Sand Pit Road 2 Sand Pit Rd North Truro, MA 02652

Inquiry Number: 7207544.3 December 19, 2022

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

12/19/22 Site Name: Sand Pit Road Horsley Witten Group, Inc. 2 Sand Pit Rd 90 Route 6A North Truro, MA 02652 Sandwich, MA 02563 EDR Inquiry # 7207544.3 Contact: Caroline Armstrong

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Horsley Witten Group, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 341B-4492-82E7

PO # 22129

Project Sand Pit Road Truro

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results Certification #: 341B-4492-82E7

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

	Library of Congress	
--	---------------------	--

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Horsley Witten Group, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Sand Pit Road

2 Sand Pit Rd North Truro, MA 02652

Inquiry Number: 7207544.8 December 20, 2022

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Site Name:

Client Name:

Sand Pit Road 2 Sand Pit Rd North Truro, MA 02652 EDR Inquiry # 7207544.8

Horsley Witten Group, Inc. 90 Route 6A Sandwich, MA 02563 Contact: Caroline Armstrong

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search	Search Results:				
Year	Scale	Details	Source		
2018	1"=500'	Flight Year: 2018	USDA/NAIP		
2014	1"=500'	Flight Year: 2014	USDA/NAIP		
2010	1"=500'	Flight Year: 2010	USDA/NAIP		
1995	1"=500'	Acquisition Date: April 03, 1995	USGS/DOQQ		
1991	1"=500'	Flight Date: April 04, 1991	USGS		
1985	1"=500'	Flight Date: March 26, 1985	USDA		
1977	1"=500'	Flight Date: April 01, 1977	USGS		
1971	1"=500'	Flight Date: May 07, 1971	USGS		
1960	1"=500'	Flight Date: May 19, 1960	USGS		
1952	1"=500'	Flight Date: July 25, 1952	USDA		
1938	1"=500'	Flight Date: November 21, 1938	USGS		

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Sand Pit Road 2 Sand Pit Rd North Truro, MA 02652

Inquiry Number: 7207544.4 December 19, 2022

EDR Historical Topo Map Report with QuadMatch™

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Site Name:

Client Name:

.-

12/19/22

Sand Pit Road 2 Sand Pit Rd North Truro, MA 02652 EDR Inquiry # 7207544.4 Horsley Witten Group, Inc. 90 Route 6A Sandwich, MA 02563 Contact: Caroline Armstrong

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Horsley Witten Group, Inc. were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results:		Coordinates:	
P.O.#	22129	Latitude:	42.023493 42° 1' 25" North
Project:	Sand Pit Road Truro	Longitude:	-70.079727 -70° 4' 47" West
		UTM Zone:	Zone 19 North
		UTM X Meters:	410611.92
		UTM Y Meters:	4652948.50
		Elevation:	46.51' above sea level
Maps Provided	:		
2018	1898		
2015	1889		
2012			
1977			
1972			
1958			
1948, 1949			
1944			

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2018 Source Sheets

North Truro 2018 7.5-minute, 24000

Vellfleet 2018 7.5-minute, 24000

2015 Source Sheets

North Truro 2015 7.5-minute, 24000

Wellfleet 2015 7.5-minute, 24000

2012 Source Sheets

North Truro 2012 7.5-minute, 24000

2012 7.5-minute, 24000

1977 Source Sheets

North Truro 1977 7.5-minute, 25000 Aerial Photo Revised 1977

Wellfleet 1977 7.5-minute, 25000 Aerial Photo Revised 1977

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1972 Source Sheets

North Truro 1972 7.5-minute, 24000 Aerial Photo Revised 1971

1958 Source Sheets

Wellfleet 1958 7.5-minute, 24000

Wellfleet 1972 7.5-minute, 24000 Aerial Photo Revised 1971

North Truro 1958 7.5-minute, 24000

1948, 1949 Source Sheets

North Truro 1948 7.5-minute, 24000

Wellfleet 1949 7.5-minute, 24000

1944 Source Sheets

North Truro 1944 7.5-minute, 31680

Wellfleet 1944 7.5-minute, 31680

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1898 Source Sheets

Provincetown 1898 15-minute, 62500

1889 Source Sheets

Provincetown 1889 15-minute, 62500

Wellfleet 1889 15-minute, 62500

S

SE

S

SE

S

SE

This report includes information from the following map sheet(s).

0 Mile	es 0.25	0.5	1	1.5
	SITE NAME	Sand Pit Road		
	ADDRESS:	2 Sand Pit Rd		
	CLIENT:	Horsley Witten Group, Inc).	

N

S

SE

Horsley Witten Group, Inc.

CLIENT:

SW

S

SE

7207544 - 4 page 11

S

7207544 - 4 page 12

2 Sand Pit Rd

North Truro, MA 02652

Horsley Witten Group, Inc.

ADDRESS:

CLIENT:

SW

S

SE

Vil	es	0.25	0.5	1
	SITE	NAME:	Sand Pit Road	
	ADDF	RESS:	2 Sand Pit Rd	
			North Truro, MA 02652	
	CLIEN	NT:	Horsley Witten Group, Inc	

SW

S

SE

Sand Pit Road 2 Sand Pit Rd North Truro, MA 02652

Inquiry Number: 7207544.5 December 20, 2022

The EDR-City Directory Image Report

6 Armstrong Road Shelton, CT 06484 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Brad street. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	<u>Target Street</u>	<u>Cross Street</u>	<u>Source</u>
2017			EDR Digital Archive
2014			EDR Digital Archive
2010			EDR Digital Archive
2005			EDR Digital Archive
2000			EDR Digital Archive
1995			EDR Digital Archive
1992			EDR Digital Archive
1989	\checkmark		Cole Criss-Cross Directory
1984	\checkmark		Cole Criss-Cross Directory

FINDINGS

TARGET PROPERTY STREET

2 Sand Pit Rd North Truro, MA 02652

<u>Year</u>	<u>CD Image</u>	Source	
SAND PIT RD			
2017	-	EDR Digital Archive	Street not listed in Source
2014	-	EDR Digital Archive	Street not listed in Source
2010	-	EDR Digital Archive	Street not listed in Source
2005	-	EDR Digital Archive	Street not listed in Source
2000	-	EDR Digital Archive	Street not listed in Source
1995	-	EDR Digital Archive	Street not listed in Source
1992	-	EDR Digital Archive	Street not listed in Source
1989	pg A1	Cole Criss-Cross Directory	
1984	pg A2	Cole Criss-Cross Directory	

FINDINGS

CROSS STREETS

No Cross Streets Identified

City Directory Images

Target StreetCross Street ✓

-

Source

Cole Criss-Cross Directory

S	AND PIT RD	1989
N0 # N0 #★	North Truro Leonard J Hansen The Window Washers 1 RESIDENCE	.71 487-9410 487-2330 1 BUSINESS
SA	NDPIPER AVE Street-1985.	02652
7 NO # NO #	North Truro 1- END CT 1 Vincent Dalo Donald Berch Henry Greenblatt 3 RESIDENCE	45 \$CA 6 86 487-4192 85 487-4573 85 487-2848
• SA	NDPIPER RD	02666
8 20★ NO # NO # NO # NO # NO # NO #	1- 99 CT 14 Paul Severino Dr R A Cooper Richard D Colombo Paul Kolton Susan S Lapidus Richard Lettieri Walter Londergan Sten Lukin Nathan Richman	48 \$AA 6 .87 349 - 1832
SA	NDPIT RD	02652
NG # NO # NO # NO # NO #	North Truro Alan S Bergman Kenneth S Brock A Freed Morris Gerber Leonard Howard 5 RESIDENCE	72 487 - 1429 77 487 - 3502 79 487 - 2158 72 487 - 1559 78 487 - 3342
SA New	NDY LN Street-1988.	02666
NO # NO #	1- END CT 1 Melissa Cohen Michael Jerace 2 RESIDENCE	44 \$AA 6 ¤ 487–4990 – 487–4990
SC SC	RIMSHAW RD	02666
0 E 7 9	1- 99 CT 1 2- 98 CT 1 Arnold W Williams . Michael S Rice 2 RESIDENCE	49 \$AA 6 47 \$BA 6 85 349-2118 73 349-6602
SH	IORE RD	02652
538 NO ### NO ### NO ### NO ### NO NO NO NO NO NO NO NO	1- END CT 1 Edward J Sheats Jos Amodio M E Coughlan Mark Dionne David Ditacchio David Fleming David Fleming David Foster Jr Angelo Garofalo Gerard J Kinahan . Valinda J McClure . Robin E Morin Laura L Murphy Gerald Nelson Daniel Prelack Stephen Robbins D Russell John W Sieverding Francis Viewara	45 \$CA 6 - - 487 - 2494 . - 487 - 3254 . # 487 - 3254 . # 487 - 3254 . # 487 - 3254 . # 487 - 3254 . # 487 - 3099 . 86 487 - 1165 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3087 . 87 487 - 3045 . - 487 - 1141 . 87 487 - 42514 . 87 487 - 0236 . # 487 - 4260 . # 487 - 4263 . 87 487 - 4263 . 87 487 - 4263 . 87 487 - 42

Target Street ✓

-

SAND PIT RD 1984

SAND	SANDPIPER RD 02666								
20 No # No # No # No #	073680 Paul Kolton	349-9484 349-7229 349-9039 349-9662 349-3606 349-3606 Business							
SANDF Wellfl	PIPER RD	02667							
No # No #	Anthony Francoline	349-9607 349-9607							
SANDI North	PIT RD Truro	02652							
No # No # No # No #	073700Alan S BergmanKenneth S BrockA FreedMorris GerberY2Leonard Howard5 Residence	487-1429 487-3502 487-2158 487-1559 487-3342							
SAND East	PT SHORES DR Falmouth	02536							
4 97 10 22 40 52 60 96 99 100 164	073710 Ernest J Butler	540-4954 548-8861 540-2897 548-7188 548-9367 548-6015 540-0265 540-2449 548-0852 548-7374							
No #	James L Sullivan82 13 Residence 1	540-3943 Business							
SANDS Catau	S COVE met	02534							
	Arthur F Sands	563-2841							
SANDS Easth	am	02642							
11 No #	George McCarthy	255-4623 255-2043							

APPENDIX D

TEST PIT AND SOIL BORING LOGS

Horsley Witten Group Sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tel: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

Date: 2/10/2023

BORING LOG: MW-1/SB-1 Project: 22129 Client: Truro DPW Drilling Contractor: Desmond Well Driling Drilling Equipment: Split-spoon

Client:	Fruro DP	W tor: Desmand Wall Driling						Co	mpletio	n Depth: 77' BGS
Drilling Drilling	Equipm Location	ent: Split-spoon						1	Denth to	Inspector: CA
Propo	rtions			USCS	Code			Size	Deptil to	Mise.
trace (trc)	0 - 10%	Blue (Bl)	Well-Gra	ded Gravel (GW)	Inorganic	Clays of Hig	gh Plasticity, Fat	Fine = (f)	Fragment	s (frag.)
little (li)	10 - 20%	Red (R)	Poorly-G	raded Gravel (GP)	Clays, Sa	ndy Clays of	High Plasticity (CH)	Medium = (m)	Cement (cem.)
some (so)	20 - 35%	Light (lt)	Silty Gray	vels. Gravel-Sand-Silt Mixtures (GM)	Organic S	Silts and Clay	s of Low to Medium	Coarse = (c)	Below Gr	ound Surface (BGS)
and	35 - 50%	Dark (dk)	Clavev G	ravels, Gravel-Sand-Clav Mixtures	Plasticity	. Sandy Orga	nic Silts, and Clavs	Dark = (dk)	Total Org	anic Vapors (TOV)
		Rust (Ru)	Well-Gra	ded Sand (SW)	Organic S	Silts and Clay	s of High Plasticity,	Fine to Coarse $=$ (f-c)	Parts per	million (PPM)
		Brown (Br)	Poorly-G	raded Sand (SP)	Sandy Or	ganic Silts ar	nd Clays (OH)	Very = (v)	Not Avail	able (N/A)
		Orange (Or)	Silty Sand	ds, Sand Silt Mixtures (SM)	Peat (PT))	5 ()	More/Less = (+/-)	Depth to	Water (DTW)
		Black (Blk)	Clayey Sa	ands, Sand-Clay Mixtures (SC)				()	1	()
		()	Inorganic	Silts, Clavey Silts of Low to Medium						
		Angular	Plasticity	(ML)						
			Inorganic	Silts, Micaceous, or Diatomaceous						
		Round (rnd.)	Silty Soil	s, Elastic Silts (MH)						
			Inorganic	Clays of Low to Medium Plasticity,						
		Angular (ang.)	Gravely,	Sandy, and Silty Clays (CL)						
Depth Feet		Description	TOV (PPM)	Recovery	USCS Code	Color	Con	nments	Well Details	Depth Feet
							_	Stand Pipe ~3.5' above grade	▶	
0-2	DRY	<i>l</i> , brown, f to m sand, trace gravel	0.10	24"	SW	lt. Br				
2-4		DRY, brown, f to m sand	0.10	20"	SW	lt. Br				
4-6	DRY, blue	-gray clay, bottom 3" is f to m red/brown sand	0.20	22"	CH/SW	Bl/G/Br				
6-8	DRY ligh	t brown fine-medium coarse sand, trace blue clay	<0.1	18"	SW	lt. Br				
8-10	DRY, r	ed/brown to light brown, f to m sand	<0.1	15"	SW	R/Br/lt Br				
10-12	Ι	DRY, light brown, f to m sand	<0.1	16"	SW	lt. Br				
12-14	1	DRY, light brown, f to c sand	<0.1	15"	SW	lt. Br	-			
14-16		DRY, light brown, f to c sand	<0.1	18"	SW	lt. Br				
16-18		DRY, light brown, f to c sand	0.10	15"	SW	lt. Br				
18-20		DRY, light brown, f to c sand	0.20	15"	SW	lt. Br				
20-21		NA	NA NA	NA NA	NA NA	NA NA	1			
22-24		DRY, light brown, f to c sand	<0.1	15"	SW	lt. Br				
24-25		NA	NA	NA	NA	NA	1			
25-26		NA	NA	NA	NA	NA	1			
26-27		NA	NA	NA	NA	NA	1			
27-29		DRY, light brown, f to c sand	0.10	18"	SW	Br				
29-30		NA	NA	NA	NA	NA	1			
30-31		NA	NA	NA	NA	NA]			
31-32		NA	NA	NA	NA	NA				
32-34 34-35		DKY, light brown, f to c sand NA	<0.1 NA	17" NA	SW NA	Br NA				
35-36		NA	NA	NA	NA	NA	1			
36-37		NA	NA	NA	NA	NA				
37-39		DRY, light brown, f to c sand	0.10	20"	SW	Br				
40.41		NA NA	INA NA	INA NA	INA NA	INA NA	1			
41-42		NA NA	NA NA	NA NA	NA NA	NA NA	1			
42-44		DRY, light brown, f to c sand	0.30	19"	SW	Br				
11 15		- NA	NA	N ^T A	N A	NA	1			
44-45		INA NA	INA NA	INA NI A	INA NA	INA NA	{			
45-46		NA	NA	NA	NA	NA				
47-49		DRY, light brown, f to c sand	0.30	16"	SW	Br				
49-50		NA	NA	NA	NA	NA				

Horsley Witten Grou	1p
---------------------	----

Sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tel: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

BORING LOG: MW-1/SB-1 Project: 22129 Client: Truro DPW Drilling Contractor: Desmond Well Driling Drilling Equipment: Sulit-space

Project: 22129 Date: 22107 Competition DPW: 77: 70: 50: 50: 50: 50: 50: 50: 50: 50: 50: 5	DON		100. M W-1/5D-1								
Client: Truno DPW Completion Depth: 77 : Drilling Equipment: Split-spoon Completion Depth: 77 : Drilling Location: SB-1/MV - Depth colspan="4">Client: Split-spoon Depth colspan="4">Split-spoon Depth colspan="4">Split-spoon Depth colspan="4">Split-spoon Depth colspan="4">Split-spoon Depth colspan="4">Split-spoon Depth colspan="4">Split-spoon Split-spoon	Project:	22129									Date: 2/10/2023
Derling Contractor: Description Description <td>Client: T</td> <td>ruro DP</td> <td>W</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ca</td> <td>mpletio</td> <td>on Depth: 77' BGS</td>	Client: T	ruro DP	W						Ca	mpletio	on Depth: 77' BGS
Drilling Lquipment: Split-spli	Drilling	Contrac	tor: Desmond Well Driling								Elevation: N/A
Dribling Location: SB-1/AW-1 Depth to Water: 72' Createring: Class of High Planticity, Fait Mile (BI) Net/Crade Gravel (GW) Inter (D) Size find Planticity, Fait Mile Planticity, Fait Mile (BI) Size find Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile Planticity, Fait Mile (D) Sign of Mile Planticity, Fait Mile Plantity, Mile Mile Mile Mile Mile Mile Mile Mile	Drilling	Equipm	ent: Split-spoon								Inspector: CA
Propertions tree (tro) Color (mathef{b}) Color (mathef{b}) USC Code (mathef{b}) Nat (mathef{b})	Drilling	Location	n: SB-1/MW-1							Depth t	to Water: 72' BGS
Inter (in 0 0.10% Blue (B) Well-Grade Grave (GW) Inter (GW) I	Propor	rtions	<u>Color</u>		USCS	Code			Size	1	Misc.
little [10] 10 - 20% Red (R) Porty-Graded Gravel (GP) Clays, Sandy Crays of High Plasticity (CH) Medium (m) Cement (em.) and 35 - 50% Dark (dk) Chayt (Gravel-Sand-Clay Mixtures (GN) Organic Silts and Clays Of High Plasticity (CH) Medium (m) Cenere (em.) Below Ground Strate (BC) none (ab 2) S - 50% Dark (dk) Chayt (GR) Well-Graded Sand (SP) Organic Silts and Clays (OH) Dark + (dk) Total Organic Vapors (Crow) Parts per milling Plasticity, Vapors (CH) Parts per milling Plasticity, Vapors (CH) Dark + (dk) Parts per milling Plasticity, Vapors (CH) Parts per milling Plasticity, Vap	trace (trc)	0 - 10%	Blue (Bl)	Well-Gra	ded Gravel (GW)	Inorganic	Clays of Hig	gh Plasticity, Fat	Fine = (f)	Fragmen	ts (frag.)
some (so) 20 - 35% and Light (th) S - 50% Silly Gravels, Grave-Sand-Sill Mxtures (GM) Dark (dk) Organic Sills and Clays of Low to Medium Plasticity, Sandy Organic Sills and Clays of High Plasticity, Sandy Organic Sills and Clays of High Plasticity, Parts per million (PPM) Dark = (dk) Parts per million (PPM) Nore/Less = (+/-) Dark = (dk) Parts per million (PPM) Nore/Less = (+/-) Dark = (dk) Parts per million (PPM) Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Parts per million (PPM) Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Surface (BC Total Organic Vapor, TOU Nore/Less = (+/-) Delve Courde Vapor Nore/Less = (+/-) Delve Courde Vapor Nore	little (li)	10 - 20%	Red (R)	Poorly-G	raded Gravel (GP)	Clays, Sa	ndy Clays of	High Plasticity (CH)	Medium = (m)	Cement ((cem.)
and 35 - 50% Dark (dk) Rus (fkn) Brown (fbr) Orange (Or) Brown (fbr) Doronge (Or) Brown (fbr) Doronge (Or) Bitks (dkl) Angular Clayey Gravels, Sandy Sifk Mutures (M) Bitks (dkl) Clayey Stands, Sand Sifk Mutures (SM) Clayey Stands, Sand Sifk Mutures (SM) Bitks (dkl) Clayey Stands, Sand Sifk Mutures (SM) Bitks (dkl) Clayey Stands, Sand Sifk Mutures (SM) Bitks (dkl) Angular Disk Stands Sifk Mutures (SM) Plasticity (ML) Inorganic Sills, Clayey Sifk of Low to Medium Plasticity (ML) Inorganic Sills, Clayey Sifk Sills, Claye Sifk Sills, Sifk Sifk Sifk Sifk Sifk Sifk Sifk Sifk	some (so)	20 - 35%	Light (lt)	Silty Gra	ilty Gravels, Gravel-Sand-Silt Mixtures (GM) Organic Silts and Clays of Low to Medium Coarse = (c)					Below G	round Surface (BGS)
Rust (Ru) Well-Graded Sand (SW) Organic Sils and Clays Of High Plasticity, Sandy Organic Sils and Clays O(H) Plastic (BK) Piret be Cause = (+) Parts per million (PPA) Nore/Less = (+) Parts per million (PPA) Nore/Less = (+) Angular Angular Inorganic Sils, Claysey Silts of Low to Medium Plasticity (ML) Inorganic Silts, Claysey Silts of Low to Medium Plasticity (ML) Angular (ang.) Na	and	35 - 50%	Dark (dk)	Clayey G	Clayey Gravels, Gravel-Sand-Clay Mixtures Plasticity, Sandy Organic Silts, and Clays Dark = (dk)					Total Org	ganic Vapors (TOV)
Brown (Br) Orange (Or) Black (BR)Peorly-Graded Stand (SP) Standy Stand, Sand (SH) Pear (PT)Sandy Organic Sits and Clays (OH) Pear (PT)Very = (Y) More Less = (H-)Not Available (NA) Depth to Water (DTW)Angular Plasticity (ML) Inorganic Sits, Clays (Sta OL vo Medium Plasticity (ML) Inorganic Clays of Low Medium Plasticity, Gravely, Sandy, and Sitly Clays (CL)Very = (Y) Pear (PT)Not Available (NA) Depth to Water (DTW)Depth FeetDescriptionTOV (PPM)RecoveryUSCS CodeCommentsWell Depth Feet50:51NANANANANANA51:52NANANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA51:52NANANANA52:54DRY, light brown, fto c sand0.1014"SWBr59:60NANANANANA60:61NANANANA61:62NANANANA61:62NANANANA61:64NANANANA67:70N			Rust (Ru)	Well-Gra	ided Sand (SW)	Organic S	Silts and Clay	s of High Plasticity,	Fine to Coarse = $(f-c)$	Parts per	million (PPM)
Orange (br) Shify Sands, Sand Sinf Mattures (SM) Peat (P1) More/Less = (+7.) Depth to Water (D1W) Angular Plask (Bik, Clayey Sands, Sand Clay Mattures (SC) Inorganic Silts, Clayey Silts of Low to Medium Plasticity (M1) Inorganic Silts, Micaceous, or Diatomaceous Silty Solts, Elastic Silts (M1) Inorganic Silts, Micaceous, or Diatomaceous Weil Depth Dopth Description TOV Recovery Code Comments Weil Depth 50-51 NA NA NA NA NA NA NA Silty Solt, Elastic Silts (SI) Plasticity, Gravely, Sandy, and Silt Claye (CL) Depth Description Depth Pert (P1) Recovery Code Comments Weil Depth Pert (P1) 52-52 NA NA NA NA NA NA NA NA Sitty Solt (State Sitty Solt			Brown (Br)	Poorly-G	raded Sand (SP)	Sandy Or	ganic Silts ar	nd Clays (OH)	Very = (v)	Not Avai	lable (N/A)
Date (BIK)Clayey sames, same Lay Mustures (x.)AngularInorganic Siles (Laye Siles (Law to Medium Plasticity (ML) Inorganic Cays of Duto Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)Inorganic Siles (PPM)ReceiveryUSCS CodeColorWellDepthDepthDescription(PPM)RecoveryUSCS CodeColorCommentsWellDepth50:51NANANANANA51:52NANANANA52:54DRY, light brown, fto c sand0.2019"SWBr54:55NANANANANA52:54DRY, light brown, fto c sand0.1014"SWBr59:60NANANANANA56:67NANANANA57:59DRY, light brown, fto c sand0.1014"SWBr59:60NANANANA61:62NANANANA61:62NANANANA61:62NANANANA61:63NANANANA61:64NANANANA61:67NANANANA61:67NANANANA67:69DRY, light brown, fto c sand0.1019"69:70NANANANA71:72NANANA72:74NANANA			Orange (Or)	Silty San	ds, Sand Silt Mixtures (SM)	Peat (PT))		More/Less = $(+/-)$	Depth to	water (DTW)
Angular Plasticity (ML) Norganic Sits, Micaceous, or Diatomaceous Sits, Micaceous, or Diatomaceous CodeColorCommentsWellDepthDepth FeetDescriptionTOV (PPM)RecoveryUSCS CodeColorCommentsWellDepth50-51NANANANANANANA51-52NANANANANA52-54DRY, light brown, fto c sand0.2019"SWBr54-55NANANANANA55-56NANANANA57-59DRY, light brown, fto c sand0.1014"SWBr64-61NANANANANA61-62NANANANA62-64DRY, light brown, fto c sand0.2018"SWBr64-65NANANANANA64-66NANANANA67-69DRY, light brown, fto c sand0.1019"SWBr64-66NANANANANA67-69DRY, light brown, fto c sand0.1019"SWBr69-70NANANANANA71-72NANANANA72-74No recoverNANANA72-75NA			Black (Blk)	Clayey S	ands, Sand-Clay Mixtures (SC)						
Plasticity (ML) Round (rnd.) Angular (ang.)Plasticity (ML) Inorganic Sitts, Kith (MH) Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Sitty Clays (CL)DepthDescription(PPM)RecoveryUSCS CodeCommentsWellDepth Feet50-51NANANANANANA51-52NANANANANA52-54DRY, light brown, fto c sand0.2019"SWBr55-56NANANANANANA55-56NANANANANA55-57NANANANANA55-56NANANANANA61-62NANANANANA61-62NANANANANA62-64DRY, light brown, fto c sand0.2018"SWBr69-60NANANANANA62-64DRY, light brown, fto c sand0.2018"SWBr69-70NANANANANA66-67NANANANA71-72NANANANA72-74No recoverNANANA72-75NANANANA72-76NANANANA72-77NANANANA72-76NANANANA72-77NANANA			Angular	Inorganic	Silts, Clayey Silts of Low to Medium						
Round (rnd.)Information courses Stills (MI) Inorganic Clays of Low to Medium Plasticity, Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Sithy Clays (CL)Depth FeetDescriptionTOV (PPM)RecoveryUSCS CodeColorCommentsWell Depth FeetDepth FeetDepth FeetDescriptionTOV (PPM)RecoveryUSCS CodeCoderCommentsWell DetailsDepth Feet51-52NANANANANANANA51-52NANANANANANA52-54DRY, light brown, fto c sand0.2019"SWBr54-55NANANANANANA57-59DRY, light brown, fto c sand0.1014"SWBr59-60NANANANANA66-61NANANANA62-64DRY, light brown, fto c sand0.2018"SWBr64-65NANANANANA66-67NANANANA67-69DRY, light brown, fto c sand0.1019"SWBr69-70NANANANANA71-72NANANANA72-74No recoverNANANA72-75NANANANA72-76NANANANA74-75NANANANA <td></td> <td></td> <td>6</td> <td>Plasticity</td> <td>r (ML) Silta Missaansa ay Distant</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			6	Plasticity	r (ML) Silta Missaansa ay Distant						
Image: Angular (ang.) Burly Soils: Listic Units (MH) (Gravely, Sandy, and Sitly Clays (CL) Depth Description (TOV) (PPM) Recovery Code Color Color Comments Well Depth Depth 50-51 NA NA NA NA NA NA 51-52 NA NA NA NA NA NA 52-54 DRY, light brown, fto c sand 0.20 19" SW Br 52-56 NA NA NA NA NA NA 55-57 NA NA NA NA NA NA 57-59 DRY, light brown, fto c sand 0.10 14" SW Br 59-60 NA NA NA NA NA NA 61-62 NA NA NA NA NA NA 62-64 DRY, light brown, fto c sand 0.20 18" SW Br 63-66 NA NA NA NA NA NA			Round (rnd.)	Inorganic	Silts, Micaceous, or Diatomaceous						
Angular (ang.) Imagine Carly of Dot Neural Manufactory and Silty Clays (CL) Magnetic Carly of Dot Neural Manufactory (PPM) Recovery USCS Code Color Comments Well Details Depth Feet 50-51 NA NA NA NA NA NA NA NA 51-52 NA NA NA NA NA NA NA 52-54 DRY, light brown, fto c sand 0.20 19" SW Br 54-55 NA NA NA NA NA NA 55-56 NA NA NA NA NA NA 55-57 NA NA NA NA NA 55-60 NA NA NA NA NA 60-61 NA NA NA NA NA 61-62 NA NA NA NA NA 62-64 DRY, light brown, fto c sand 0.10 18" SW Br 63-66 NA NA				Sifty Soil	s, Elastic Sills (IVIFI) Clays of Low to Medium Plasticity						
Depth Description TOV (PPM) Recovery USCS Code Color Comments Depth Details Depth Feet 50-51 NA NA NA NA NA NA NA 51-52 NA NA NA NA NA NA NA 52-54 DRY,light brown, fto c sand 0.20 19" SW Br 54-55 NA NA NA NA NA NA 55-57 NA NA NA NA NA NA 56-57 NA NA NA NA NA NA 56-57 NA NA NA NA NA NA 60-61 NA NA NA NA NA NA 61-62 NA NA NA NA NA NA 62-64 DRY, light brown, fto c sand 0.10 19" SW Br 63-66 NA NA NA NA </td <td></td> <td></td> <td>Angular (ang.)</td> <td>Gravelv.</td> <td>Sandy, and Silty Clays (CL)</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>			Angular (ang.)	Gravelv.	Sandy, and Silty Clays (CL)					1	
Depth Feet Description TOV (PPM) Recovery USCS Code Color Comments Well Detils Depth Feet 50-51 NA NA NA NA NA NA NA 51-52 NA NA NA NA NA NA NA 52-54 DRY, light brown, fo c sand 0.20 19" SW Br 54-55 NA NA NA NA NA NA 55-56 NA NA NA NA NA NA 55-57 NA NA NA NA NA NA 59-60 NA NA NA NA NA NA 60-61 NA NA NA NA NA NA 62-64 DRY, light brown, fo c sand 0.0 18" SW Br 63-66 NA NA NA NA NA NA 69-70 NA NA NA NA<			I	, , , , , , , , , , , , , , , , , , ,	5, 5 5 ()						
Feet Code NA NA <th< td=""><td>Depth</td><td></td><td>Description</td><td>TOV</td><td>Recovery</td><td>USCS</td><td>Color</td><td>Con</td><td>nments</td><td>Well</td><td>Depth</td></th<>	Depth		Description	TOV	Recovery	USCS	Color	Con	nments	Well	Depth
30-31 NA	Feet			(PPM)		Code				Details	Feet
51-52 INA INA <th< td=""><td>50-51</td><td></td><td>NA NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA NA</td><td></td><td></td><td></td><td></td></th<>	50-51		NA NA	NA	NA	NA	NA NA				
52-54 DRY, light brown, fto c sand 0.20 19" SW Br 54-55 NA NA NA NA NA NA 55-56 NA NA NA NA NA NA 56-57 NA NA NA NA NA NA 57-59 DRY, light brown, fto c sand 0.10 14" SW Br 59-60 NA NA NA NA NA 60-61 NA NA NA NA NA 62-64 DRY, light brown, fto c sand 0.20 18" SW Br 64-65 NA NA NA NA NA 66-67 NA NA NA NA NA 66-67 NA NA NA NA NA 69-70 NA NA NA NA NA NA 71-72 NA NA NA NA NA NA 72-74 No recover NA NA NA NA NA 2-inch well	31-32		INA	INA	INA	INA	INA	-			
54:55 NA Sight state Sight	52-54	1	DRY, light brown, f to c sand	0.20	19"	SW	Br				
55-56 NA NA NA NA NA NA NA NA Solution So	54-55		NA	NA	NA	NA	NA				
56-57 NA	55-56		NA	NA	NA	NA	NA				
57-59 DRY, light brown, f to c sand 0.10 14" SW Br 59-60 NA NA NA NA NA NA 60-61 NA NA NA NA NA NA 61-62 NA NA NA NA NA NA NA 61-62 NA NA NA NA NA NA NA 62-64 DRY, light brown, f to c sand 0.20 18" SW Br Br <td>56-57</td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>4</td> <td></td> <td></td> <td></td>	56-57		NA	NA	NA	NA	NA	4			
59-60 NA	57-59	1	DRY, light brown, f to c sand	0.10	14"	SW	Br				
60-61 NA	59-60		NA	NA	NA	NA	NA				
61-62 NA	60-61		NA	NA	NA	NA	NA				
62-64 DRY, light brown, f to c sand 0.20 18" SW Br 64-65 NA NA NA NA NA NA 65-66 NA NA NA NA NA NA 66-67 NA NA NA NA NA NA 67-69 DRY, light brown, f to c sand 0.10 19" SW Br 69-70 NA NA NA NA NA NA 70-71 NA NA NA NA NA NA 71-72 NA NA NA NA NA NA 72-74 No recover NA O" NA NA 2-inch 0.010 slot PVC screen (10-feet) 2-inch well set at 77'	61-62		NA	NA	NA	NA	NA				
64-65 NA	62-64]	DRY, light brown, f to c sand	0.20	18"	SW	Br				2' Potonito
65-66 NA	64-65		NA	NA	NA	NA	NA				2 Detointe
66-67 NA	65-66		NA	NA	NA	NA	NA				
67-69 DRY, light brown, f to c sand 0.10 19" SW Br 69-70 NA NA NA NA NA NA 70-71 NA NA NA NA NA NA 71-72 NA NA NA NA NA NA 72-74 No recover NA O" NA NA 2-inch 0.010 slot PVC screen (10-feet) screen (10-feet) 76-77 NA NA NA NA NA NA	66-67		NA	NA	NA	NA	NA				
69-70 NA	67-69	1	DRY, light brown, f to c sand	0.10	19"	SW	Br				
70-71 NA NA NA NA NA NA NA NA NA DTW = 72' 12' Sand 12' Sand <th< td=""><td>69-70</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td></td><td></td><td></td><td></td></th<>	69-70		NA	NA	NA	NA	NA				
71-72 NA NA NA NA NA NA 72-74 No recover NA 0" NA NA 74-75 NA NA NA NA NA 75-76 NA NA NA NA NA 76, 77 NA NA NA NA 2-inch well set at 77'	70-71		NA	NA	NA	NA	NA		DTW = 72'		12' Sand
72-74 No recover NA 0" NA NA 74-75 NA NA NA NA NA 75-76 NA NA NA NA 76 T NA NA NA	71-72		NA	NA	NA	NA	NA		—	*	12 Janu
74-75 NA NA NA NA NA 75-76 NA NA NA NA 76-77 NA NA NA	72-74		No recover	NA	0"	NA	NA		2-inch 0.010 slot PVC screen (10-feet)		
75-76 NA NA NA NA 76-77 NA NA NA NA	74-75		NA	NA	NA	NA	NA] -	serven (ro reet)	→	
76.77 NA NA NA NA NA	75-76		NA	NA	NA	NA	NA		2-inch well set at 77'		
	76-77		NA	NA	NA	NA	NA		2 men wen set at //		

Horsley Witten Group Sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tet: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

BORING LOG: MW-2/SB-2 Project: 22129 Client: Truro DPW Drilling Contractor: Desmond Well Driling Drilling Equipment: Split-spoon

Project: 22129 Client: Truro DPW Drilling Contractor: Desmond Well Driling Drilling Equipment: Split-spoon Drilling Location: SB-2/MW-2 Proportions Color trace (trc: 0 - 10% Blue (Bl) little (li) 10 - 20% Red (R) some (so) 20 - 35% Light (lt) and 35 - 50% Dark (dk) Brown (Br) Orange (Or) Black (Blk) Black (Blk)				USCS Code Well-Graded Gravel (GW) Inorganic Clays of High Plasticity, Fat Poorly-Graded Gravel (GP) Clays, Sandy Clays of High Plasticity (CH) Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Organic Silts and Clays of Low to Medium Clayey Gravels, Gravel-Sand-Clay Mixtures Plasticity, Sandy Organic Silts, and Clays Well-Graded Sand (SW) Organic Silts and Clays of High Plasticity, Poorly-Graded Sand (SP) Sandy Organic Silts and Clays (OH) Silty Sands, Sand-Silt Mixtures (SM) Peat (PT) Clayey Sands, Sand-Clay Silts of Low to Medium Plasticity					Mate: 2/10-14/2023 ompletion Depth: 57' BGS Elevation: N/A Inspector: JG/CA Depth to Water: 52' BGS Fragments (frag.) Cement (cem.) Below Ground Surface (BGS) Total Organic Vapors (TOV) Parts per million (PPM) Not Available (N/A) Depth to Water (DTW)	
		Angular Round (rnd.) Angular (ang.)	Plasticity Inorganic Silty Soil Inorganic Gravely,	(ML) Silts, Micaceous, or Diatomaceous s, Elastic Silts (MH) Clays of Low to Medium Plasticity, Sandy, and Silty Clays (CL)						
Depth Feet		Description	TOV (PPM)	Recovery	USCS Code	Color	Con	nments	Well Details	Depth Feet
								Stand Pipe ~2' above	П	
0-2	DR	RY, brown, f to m sand, trace silt	0.60	24"	SW/SM	Br		grade	>	
2-4		DRY, brown, f sand	0.20	20"	SW	Br				
4-6		DRY, brown, f to m sand	0.20	18"	SW	Br				
6-8		DRY, brown, f to m sand	0.20	16"	SW	Br				
8-10		DRY, brown, f to c sand	0.20	17"	SW	Br				
10-12		DRV brown fto m sand	0.20	15"	SW	Br				
12 14		DPV brown fine send	0.20	21"	SW	Dr				
14.16		DRI brown fite a cond	0.20	14"	SW	Di	_			
14-10		DRY, brown, 1 to c sand	0.20	14	5W	Br				
16-18		DRY, light brown, f to c sand	0.30	17"	SW	lt Br	-			
18-20		DRY, brown, f to c sand	0.60	16"	SW	Br				
20-21		NA	NA	NA NA	NA	NA				
22-23		NA	NA	NA	NA	NA				
23-25		DRY, brown, f to c sand	<0.1	14"	SW	Br				
25-26		NA NA	NA	NA NA	NA NA	NA NA	-			
27-28		NA	NA	NA	NA	NA				
28-30		DRY, brown, f to c sand	0.10	16"	SW	Br				
30-31		NA	NA	NA	NA	NA				
31-32 32-33		NA	NA NA	NA	NA NA	NA				
33-35		DRY, brown, f to c sand	< 0.1	16"	SW	Br	-			
35-36		NA	NA	NA	NA	NA	-			
36-37		NA	NA	NA	NA	NA	-			
37-38		NA DRV I I	NA 1	NA	NA	NA				
38-40		DRY, brown, m to c sand	<0.1	N/A	SW	Br				
40-41 41-42		NA NA	NA	NA	NA NA	NA				
42-43		NA	NA	NA	NA	NA	-			
43-45		DRY, brown, f to c sand	< 0.1	N/A	SW	Br				2' Betonite
45-46		NA	NA	NA	NA	NA				
46-47		NA	NA	NA NA	NA	NA	-			
48-50		DRY, brown, f to c sand	< 0.1	N/A	SW	Br				
50-51		NA	NA	NA	NA	NA		DTW = 52'		12' Sand
51-52 52-53		NA	NA NA	NA NA	NA NA	NA NA		2 inch 0.010 cl-+ BVC		
53-55	Saturat	red, brown, f to c sand, trace cobbles	0.10	12"	SW	Br	-	screen (10-feet)		
55-56		NA	NA	NA	NA	NA		2 inch well+ -+ 57		
30-37		INA	NA	NA	NA	NA		∠-inch well set at 57		

Horsley Witten Group *Sustainable Environmental Solutions* 90 Route 6A · Sandwich, MA · 02563 Tel: 508-B33-6600 · Fax: 508-B33-3150 · www.horsleywitten.com

BORING LOG: MW-2/SB-2 Project: 22129 Client: Truro DPW Drilling Contractor: Desmond Well Driling Drilling Equipment: Split-spoon

Depth Description Total of the period of th	Project: 22129 Client: Truro DPV Drilling Contract Drilling Equipme Drilling Location Proportions trace (trc) 0 - 10% little (li) 10 - 20% some (so) 20 - 35% and 35 - 50%	W for: Desmond Well Driling ent: Split-spoon : SB-2/MW-2	Well-Gra Poorly-G Silty Gra Clayey G Well-Gra Poorly-G Silty San Plosticity Inorganic Silty Soil Inorganic Gravely	USCS ded Gravel (GW) raded Gravel (GP) vels, Gravel-Sand-Silt Mixtures (GM) ravels, Gravel-Sand-Clay Mixtures ded Sand (SW) raded Sand (SP) ds, Sand-Silt Mixtures (SM) ands, Sand-Clay Mixtures (SC) silts, Clayey Silts of Low to Medium (ML) Silts, Micaceous, or Diatomaceous s, Elastic Silts (MH) Clays of Low to Medium Plasticity, Sandy and Silty Clays (CL)	Code Inorganic Clays, Sa Organic 1 Plasticity Organic 1 Sandy Or Peat (PT)	c Clays of Hig indy Clays of Silts and Clay , Sandy Orga Silts and Clay rganic Silts ar)	gh Plasticity, Fat High Plasticity (CH) ys of Low to Medium nic Silts, and Clays ys of High Plasticity, nd Clays (OH)	Co Size Fine = (f) Medium = (m) Coarse = (c) Dark = (dk) Fine to Coarse = (f-c) Very = (v) More/Less = (+/-)	Templetic Depth 1 Fragmen Cement 1 Below G Total Or Parts per Not Ava Depth to	Date: 2/14-15/2023 on Depth: 36' BGS Elevation: N/A Inspector: CA to Water: 28' BGS <u>Misc.</u> ts (frag.) (cem.) round Surface (BGS) ganic Vapors (TOV) : milion (PPM) ilable (N/A) : Water (DTW)
Feet Determinent (PPM) Reference Code Const Constants Details Feet 0-2 DRY, brown, fto m sand, trace gravel, trace organies 0.20 15" SW IBr 2.4 DRY, brown, fto m sand, trace gravel -0.1 15" SW Br 4.6 DRY, brown, fto m sand, trace gravel -0.1 4" SW Br 6.8 DRY, brown, fto m sand, trace gravel -0.1 8" SW Br 10-12 DRY, brown, fto m sand, trace gravel 0.10 15" SW Br 12-14 DRY, brown fitor mand, trace gravel 0.30 17" SW Br/ 14-16 DRY brown-fight brown fire medium coarse sand, trace gravel 0.10 18" SW Br/th Br 16-18 DRY, brown, fto c sand, trace gravel 0.10 18" SW Br/th Br 12-12 NA NA NA NA NA 22-23 NA NA NA NA NA 22-23 NA<	Depth	Description	TOV	Recovery	USCS	Color	Cor	nments	Well	Depth
O-2 DRY, brown, ft on mand, trace gravel, trace organics 0.20 15" SW Br 2.4 DRY, brown, ft on mand, trace gravel <0.1	Feet	Description	(PPM)	recovery	Code	COIOI	Con		Details	Feet
0-2 Control organics 0.20 15" SW IBr 2.4 DRY, brown, fto m sand, trace gravel <0.1	DRY, bi	rown, f to m sand, trace gravel, trace				-		Stand Pipe ~1.5 above	▶	
2:4 DRY, brown, ft on sand, trace gravel -0.1 15" SW Br 4:6 DRY, brown, ft on sand, trace gravel -0.1 4" SW Br 6:8 DRY, brown, ft on sand, trace gravel -0.1 8" SW Br 10:12 DRY, brown, ft on sand, trace gravel 0.10 15" SW Br 10:12 DRY, brown, ft on sand, trace gravel 0.10 15" SW Br/ 12:14 DRY, brown, ft on sand, trace gravel 0.30 17" SW Br/l Br/R 14:16 DRY brown-light brown for endium coarse sand, trace gravel 0.10 17" SW Br/l Br/R 16:18 DRY brown/light brown, for c sand, trace gravel 0.10 18" SW Br/l Br 20:21 NA NA NA NA NA NA 21:22 NA NA NA NA NA NA 23:25 DRY, brown, fut c sand, trace gravel 0.10 18" SW Br 25:26 NA	0-2	organics	0.20	15"	SW	lBr				
4-6 DRY, brown, ft on sand, trace gravel <0.1	2-4 DRY	, brown, f to m sand, trace gravel	< 0.1	15"	SW	Br				
6-8 DRY, brown, fto m sand, trace gravel <0.1 8" SW Br 8-10 DRY, brown, fto m sand, trace gravel 0.10 15" SW Br 10-12 DRY, brown, fto m sand, trace gravel 0.30 17" SW Br/ 12-14 DRY, brown, fto fto s and, trace gravel 0.30 19" SW Br/lt Br/ 14-16 DRY brown fine medium coarse sand, trace gravel 0.20 18" SW Br/lt Br 14-16 DRY brown fine medium coarse sand, trace gravel 0.10 17" SW Br/lt Br 18-20 DRY, brown/light brown, fto c sand, trace gravel 0.10 18" SW Br/lt Br 22-21 NA NA NA NA NA 22-22 NA NA NA NA NA 22-23 NA NA NA NA NA 22-27 NA NA NA NA NA 27-28 NA NA NA NA NA 2	4-6 DRY	, brown, f to m sand, trace gravel	<0.1	4"	SW	Br				
8-10 DRY, brown, ft on sand, trace gravel 0.10 15" SW Br 10-12 DRY, brown, ft on sand, trace gravel 0.30 17" SW Br/lt Br 12-14 DRY, brown light brown in fare difue canse sand, trace gravel 0.30 19" SW Br/lt Br/R 14-16 DRY brown-light brown fine medium coarse sand, trace gravel 0.20 18" SW Br/lt Br 16-18 DRY brown fine medium coarse sand, trace gravel 0.10 17" SW Br/ 18-20 DRY, brown/light brown, ft oc sand, trace gravel 0.10 17" SW Br/ 18-20 DRY, brown/light brown, ft oc sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA NA 22-23 NA NA NA NA NA NA 22-25 DRY, brown, m to c sand, trace gravel 0.10 18" SW Br 25-26 NA NA NA NA NA NA	6-8 DRY	, brown, f to m sand, trace gravel	<0.1	8"	SW	Br				
10-12 DRY, brown, ft om sand, bottom 3" is light brown, ft om sand, trace gravel 0.30 17" SW Br/lt Br 12-14 DRY, brown/light brown to red ft oc sand, trace fines, trace gravel 0.30 19" SW Br/lt Br/R 14-16 DRY brown-light brown to red ft oc sand, trace fines, trace gravel 0.20 18" SW Br/lt Br 16-18 DRY brown/light brown to carse sand, trace gravel 0.10 17" SW Br 18-20 DRY, brown/light brown, ft oc sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA 21-22 NA NA NA NA 22-31 NA NA NA NA 22-21 NA NA NA NA 22-23 NA NA NA NA NA 22-25 DRY, brown, ft o c sand, trace gravel 0.10 18" SW Br 25-26 NA NA NA NA NA NA <tr< td=""><td>8-10 DRY</td><td>, brown, f to m sand, trace gravel</td><td>0.10</td><td>15"</td><td>SW</td><td>Br</td><td></td><td></td><td></td><td></td></tr<>	8-10 DRY	, brown, f to m sand, trace gravel	0.10	15"	SW	Br				
12-14 DRY, brown/light brown to red f to c sand, trace fines, trace gravel 0.30 19" SW Br/lt Br/R 14-16 DRY brown-light brown fine medium coarse sand, trace gravel 0.20 18" SW Br/lt Br 16-18 DRY brown/light brown, fine medium coarse sand, trace gravel 0.10 17" SW Br 18-20 DRY, brown/light brown, f to c sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA NA 21-22 NA NA NA NA NA 22-23 NA NA NA NA NA 23-25 DRY, brown, f to c sand, trace gravel 0.10 18" SW Br 25-26 NA NA NA NA NA NA 28-30 DRY, brown, m to c sand, trace gravel 0.20 17" SW Br 30-31 NA NA NA NA NA NA NA 32-33 NA NA	10-12 DRY, brow	n, f to m sand, bottom 3" is light brown, f to m sand, trace gravel	0.30	17"	SW	Br/lt Br				
14-16 DRY brown-light brown fine medium coarse sand, trace gravel 0.20 18" SW Br/lt Br 16-18 DRY brown fine medium coarse sand, trace gravel 0.10 17" SW Br 18-20 DRY, brown/light brown, fto c sand, trace gravel 0.10 18" SW Br/lt Br 18-20 DRY, brown/light brown, fto c sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA NA 21-22 NA NA NA NA NA 22-23 NA NA NA NA NA 23-25 DRY, brown, fto c sand, trace gravel 0.10 18" SW Br 25-26 NA NA NA NA NA NA 27-28 NA NA NA NA NA NA 28-30 DRY, brown, m to c sand, trace gravel 0.20 17" SW Br 30-31 NA NA NA NA NA NA 32-33 NA NA NA NA	12-14 DRY, bro	wn/light brown to red f to c sand, trace fines, trace gravel	0.30	19"	SW	Br/lt Br/R				
16-18 DRY brown fine medium coarse sand, trace gravel 0.10 17" SW Br 18-20 DRY, brown/light brown, f to c sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA NA 21-22 NA NA NA NA NA NA 22-23 NA NA NA NA NA NA 23-25 DRY, brown, f to c sand, trace gravel 0.10 18" SW Br 26-27 NA NA NA NA NA NA 27-28 NA NA NA NA NA 28-30 DRY, brown, m to c sand, trace gravel 0.20 17" SW Br 30-31 NA NA NA NA NA NA 31-32 NA NA NA NA NA NA 33-35 Saturated, brown, f to c sand NA 0" SW Br 2-inch 0.01	14-16 DRY brown	n-light brown fine medium coarse sand, trace gravel	0.20	18"	SW	Br/lt Br				
18-20 DRY, brown/light brown, ft oc sand, trace gravel 0.10 18" SW Br/lt Br 20-21 NA NA NA NA NA NA 21-22 NA NA NA NA NA NA 22-23 NA NA NA NA NA NA 23-25 DRY, brown, ft oc sand, trace gravel 0.10 18" SW Br 25-26 NA NA NA NA NA NA 26-27 NA NA NA NA NA NA 27-28 NA NA NA NA NA NA 28-30 DRY, brown, m to c sand, trace gravel 0.20 17" SW Br 30-31 NA NA NA NA NA NA NA 31-32 NA NA NA NA NA NA NA 33-35 Saturated, brown, ft oc sand NA 0" SW Br	16-18 DRY brown	n fine medium coarse sand, trace gravel	0.10	17"	SW	Br				
20-21 NA	18-20 DRY, brow	n/light brown, f to c sand, trace gravel	0.10	18"	SW	Br/lt Br				
21-22 NA	20-21	NA	NA	NA	NA	NA				
22-23 NA	21-22	NA	NA	NA	NA	NA				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22-23	NA	NA	NA	NA	NA	-			2' Betonite
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23-25 DRY	, brown, f to c sand, trace gravel	0.10	18"	SW	Br				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25-26	NA	NA	NA	NA	NA				
21720 INA INA </td <td>20-27</td> <td>NA NA</td> <td>NA NA</td> <td>NA NA</td> <td>NA</td> <td>NA NA</td> <td>{</td> <td>DTW = 20!</td> <td></td> <td></td>	20-27	NA NA	NA NA	NA NA	NA	NA NA	{	DTW = 20!		
30-31 NA NA NA NA NA 31-32 NA NA NA NA NA 32-33 NA NA NA NA NA 33-35 Saturated, brown, fto c sand NA 0" SW Br	27-28 28-30 DRY	, brown, m to c sand, trace gravel	0.20	17"	SW	Br	-	D1W = 28	•	
31-32 NA NA NA NA NA 32-33 NA NA NA NA NA 33-35 Saturated, brown, fto c sand NA 0" SW Br	30-31	NA	NA	NA	NA	NA				12' Sand
32-33 NA NA NA NA NA 33-35 Saturated, brown, fto c sand NA 0" SW Br	31-32	NA	NA	NA	NA	NA	1	2 inch 0.010 slot BVC		
33-35 Saturated, brown, fto c sand NA 0" SW Br	32-33	NA	NA	NA	NA	NA	1	2-men 0.010 slot PVC screen (10-feet)		
	33-35	Saturated, brown, f to c sand	NA	0"	SW	Br	-		▶	
35-36 NA NA NA NA NA 2-inch well set at 36'	35-36	NA	NA	NA	NA	NA]	2-inch well set at 36'	Ų	

Project	: 22129							Date: 2/2/23
Client:	Town of	Truro					Com	pletion Depth: 10'
Contrac	ctor: Tru	iro DPW						Elevation: TBD
Equipm	ent: Exe	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	npleted near asphalt pile				Dej	oth to Water: N/A
Propo	rtions_	<u>Color</u>	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic (Clays of High Pl	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Cla	ys of High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Si	ilts and Clays of	Low to Medium	Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity,	Sandy Organic S	Silts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic Si	ilts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Si	ilts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)	L				
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Durit			LIGCO					TOV
Depth		Description	Code		Color Co		nments	(PPM)
0-2'	Lig	ht brown, dry, f to m sand	SW		lt Br lt Br			0.2
2-4'	Lig	cht brown, dry, f to m sand	SW		lt Br			0.2
4-6'	Lig	ht brown, dry, f to m sand	SW		lt Br	Consistent soil t	hroughout test pit	0.2
6-8'	Lig	ht brown, dry, f to m sand	SW		lt Br			0.1
8-10'	Lig	ht brown, dry, f to m sand	SW		lt Br			0.1
						Total d	epth: 10'	

Project: 22129 Date: 2/2										
Client:	Гown of	Truro				Com	oletion Depth: 10'			
Contrac	tor: Tru	iro DPW					Elevation: TBD			
Equipm	ent: Ex	cavator					Inspector: CA			
Location	1: Sand	Pit Property; test pit con	npleted near asphalt pile and lobster	r traps		Dep	th to Water: N/A			
Propor	tions	Color	USC	CS Code		Size	Misc.			
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic Clays of High I	Plasticity, Fat Clays,	Fine = (f)	Fine to Coarse $=$ (f-c)			
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clays of High Plas	sticity (CH)	Medium = (m)	Very = (v)			
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of	f Low to Medium	Coarse = (c)	More/Less = (+/-)			
and	35 - 50%	Dark (dk)	(GC)	Plasticity, Sandy Organic	Silts, and Clays (OL)					
		Rust (Ru)	Well-Graded Sand (SW)	Organic Silts and Clays of	of High Plasticity, Sandy					
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Silts and Clays (OH)					
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)						
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)							
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)							
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)							
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)							
Depth			USCS				TOV			
Feet		Description	Code	Color	Con	nments	(PPM)			
0-2'	Light bi	rown, dry m to f sand, trace silt	SW	lt Br lt Br			0.2			
2-4'	Light br	own, dry, f to c sand and clayey sand	SW/SC	lt Br			0.3*			
4-6'	Light b	rown, dry sand and sandy clay	SW/SC	lt Br			0.2			
6-8'	Light bro	wn dry, sand, some orange sandy clay	SW/SC	lt Br/Or			0.1			
00	Light bro	wn, dry, sand and orange sandy clay	SW	lt Br/Or			0.1			
8-10'										
Nieter										
Note:	llacted for	analytical nurnoses			Total	lenth: 10'				
- Sample co	nected for	anaryucai purposes			1 otal c	iepui: 10				

Project:	22129							Date: 2/2/23
Client:	Гown of	Truro					Comp	letion Depth: 10'
Contrac	tor: Tru	iro DPW					-	Elevation: TBD
Equipm	ent: Exc	cavator						Inspector: CA
Location	1: Sand	Pit Property; test pit con	ppleted near trailers and lobster trap	0			Dep	th to Water: N/A
Propor	tions	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic Clays o	of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clays of H	High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity, Sandy	Organic S	silts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic Silts and	d Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Silts and	d Clays (O	H)		
		Drange (Or)	Slity Sands, Sand Slit Mixtures (SM)	Peat (P1)				
		DIACK (DIK)	Layey Sands, Sand-Clay Mixtures (SC)					
		<u>Angular</u>	Plasticity (ML)					
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Darith			LICC	Mana				TOV
Feet		Description	Code	C	Color	Com	nments	(PPM)
0-2'	Dark brov	vn, dry, c sand, trace roots, trace clay	SW	it It	t Br t Br			0.1*
2-4'	Light bro	own, dry, c sand and f to c sand	SW	lt	lt Br			0.1
4-6'	Light br	own, dry, c sand and f to c sand	SW	lt	lt Br			<0.1
6-8'	I	Light brown, dry, c sand	SW	lt	t Br			<0.1
8-10'	I	Light brown, dry, c sand	SW	11	lt Br			<0.1
Note: *Sample co	llected fron	n depth for analytical purposes				Total d	epth: 10'	

Project:	: 22129							Date: 2/2/23
Client:	Town of	Truro					Com	pletion Depth: 10'
Contrac	tor: Tru	iro DPW						Elevation: TBD
Equipm	ent: Ex	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	pleted behind compost pile				Dep	th to Water: N/A
Propor	rtions_	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic	Clays of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Cl	ays of High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity	, Sandy Organic S	Silts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic S	Silts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic S	Silts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT))			
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)					
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Darth			LISCS		1			TOV
Feet		Description	Code		Color	Con	nments	(PPM)
0-2'		Brown, dry, c sand	SW		Br Br			<0.1
2-4'	Brown,	dry, c sand AND brown, dry, f sand	SW		Br			<0.1
4-6'	Brown,	dry, c sand AND brown, dry f sand, trace cobbles	SW		Br			0.0
6-8'	Brown, dr	y, c sand AND brown, dry, f sand	SW		Br			0.0
8-10'	Brown,	dry, c sand AND brown, dry, f sand	SW		Br			0.0
						Total d	lepth: 10'	

Project	: 22129							Date: 2/2/23
Client:	Town of	Truro					Com	oletion Depth: 10'
Contrac	tor: Tru	iro DPW						Elevation: TBD
Equipm	ent: Ex	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	npleted near treeline				Dep	th to Water: N/A
Propo	rtions	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic	Clays of High Pl	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Cla	ays of High Plasti	icity (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity	, Sandy Organic S	Silts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic S	Silts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic S	Silts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		<u>Angular</u>	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)	l				
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Derth			LISCS					TOV
Feet		Description	Code		Color	Con	nments	(PPM)
1000								(*****)
0-1'	D	ark brown/black organics	-		dk Br	Manure like odor throu	ughout first 4' of test pit	0.2*
1-2']	Dark, dry, brown c sand	SW		dk Br			
2-4'	Brown, c	dry, c sand AND dry m to c sand	SW		Br			0.1
	Brown, c	lry, c sand AND dry f to m sand,						
4-6'	with 1	trace plastic and wood debris intermixed	SW		Br			0.0
]	Light brown, dry, c sand	SW		Br			0.3*
6-8'								
	1	Light brown, dry, c sand	SW		Br			0.1*
8-10'								
Note:								10000000000
*Sample co	llected for	analytical purposes				Total d	lepth: 10'	

Project:	22129							Date: 2/2/23
Client: '	Town of	Truro					Comp	oletion Depth: 10'
Contrac	tor: Tru	ıro DPW						Elevation: TBD
Equipm	ent: Exe	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit nea	r wooden utility poles				Dep	th to Water: N/A
Propoi	<u>tions</u>	<u>Color</u>	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic	Clays of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Cl	ays of High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium		Coarse = (c)	More/Less = (+/-)	
and	35 - 50%	Dark (dk)	(GC)	Plasticity	, Sandy Organic S	Silts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic S	Silts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic S	Silts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		<u>Angular</u>	Plasticity (ML)					
		Round (md.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Denth			USCS					TOV
Feet		Description	Code		Color	Corr	iments	(PPM)
0-0.5'		organic topsoil	-		Br			
0.5-2'	Brown, o	dry, f sand, with trace wood and brick debris	SW		Br			0.3*
2-4'	Brown	, dry, f sand, trace clayey sand	SW		Br			<0.1
4-6'	Brown, d	lry, f sand, trace wood and brick debris	SW		Br			<0.1
					_			
		Brown, dry, f sand	SW		Br			<0.1
6-8'								1000000000000
		Brown, dry, f sand	SW		Br			<0.1
0.101		-						- Non-America - America - Ameri
8-10'								
								100000000
Note:								-
*Sample co	llected for	analytical purposes				Total d	epth: 10'	

Project:	22129							Date: 2/2/23
Client:	Town of	Truro					Com	oletion Depth: 10'
Contrac	tor: Tru	iro DPW						Elevation: TBD
Equipm	ent: Exc	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	npleted near shell pile				Dep	th to Water: N/A
Propor	tions_	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic	Clays of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Cla	ys of High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity,	Sandy Organic S	ilts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic S	ilts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic S	ilts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)	L				
		Round (md.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Durit			LIGOD					TOV
Deptn Feet		Description	Code		Color	Corr	iments	(PPM)
								(1111)
0-0.5'		Shells and organic soil	-		Br			
		C C						<0.1
0.5-2'					lt Br			~0.1
	I	ight brown, dry, f sand	SW					
2-4'	Light brow	wn, dry, f sand, some gray c sand	SW		lt Br			<0.1
4-6'	Light brow	vn, dry, f sand AND brown c sand	SW		lt Br			<0.1
	Light br	own, dry, f sand AND brown c	SW		lt Br			<0.1
		sand	5.0		it bi			-0.1
6-8'								
								supported by the second s
	Light brow	vn, dry, f sand AND brown c sand	SW		lt Br			<0.1
8 10								
8-10								
								- Non-America - America - Ameri
								source and the second se
								1 Monorman and 1
						Total d	epth: 10'	vennee

Project:	: 22129							Date: 2/2/23
Client:	Town of	Truro					Com	oletion Depth: 10'
Contrac	tor: Tru	iro DPW					-	Elevation: TBD
Equipm	ent: Ex	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	npleted near the edge of Noons Driv	V			Dep	th to Water: N/A
Propor	rtions	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic C	lays of High Pla	asticity. Fat Clays.	Fine = (f)	Fine to Coarse = $(f-c)$
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clay	s of High Plasti	city (CH)	Medium = (m)	Very = (v)
			•			• • •		
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium		Coarse = (c)	More/Less = (+/-)	
and	35 - 50%	Dark (dk)	(GC)	Plasticity, S	Sandy Organic S	ilts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic Sil	ts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Sil	ts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)	1				
		Round (md.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Durit			LIGOD					TOV
Feet		Description	Code		Color	Con	nments	(PPM)
					lt Br			
			C					
0-2'	Light bro	own, dry, f sand, some organics	SW		lt Br			<0.1
2-4'	Light brow	vn, dry, f sand, some gray clayey	SW/SC		lt Br			2.3*
		sand	- · · ·					
4-6'	Light bro	own, dry, f sand, trace clay, trace	SW/SC		lt Br			0.7
		coones						
	Light brow	wn, dry, f sand, some coarse sand	SW		lt Br			<0.1
6-8'								
	Tisket	d f 1	GW		IA D			-0.1
	Light brow	wn, ury, I sand, some coarse sand	5w		it Br			<0.1
8-10'								1000000000
								- Common and a second se
N T (10 mm
Note:	lloated for	analytical numbers				T-4-1 4	anth: 10	-
· sample co	nected for	anarytical purposes				i otal d	epui: 10	2000

Project:	22129							Date: 2/2/23
Client: 7	Fown of	Truro					Com	pletion Depth: 10'
Contrac	tor: Tru	iro DPW						Elevation: TBD
Equipm	ent: Exe	cavator						Inspector: CA
Location	1: Sand	Pit Property; test pit con	ppleted near trees and Noons Drive	by sand j	piles		De	oth to Water: N/A
Propor	tions	Color	USC	CS Code	•		Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic C	Clavs of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clay	ys of High Plasti	city (CH)	Medium = (m)	Very = (v)
			•			• • •		
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity,	Sandy Organic S	ilts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic Si	ilts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Si	ilts and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		Angular	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)					
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
Durit			LISCO					TOV
Feet		Description	Code		Color	Con	nments	(PPM)
					lt Br			
0-2'	Light bro	wn, dry, m to c sand, trace fines	SW					0.1*
	0	, ,, ,			lt Br			-
2-4'	Light bro	wn, dry, mto c sand, trace fines	SW		lt Br			<0.1
4-6'	Light bro	wn, dry, m to c sand, trace fines	SW		lt Br	Consistent soil t	hroughout test pit	<0.1
	T inte t		0117		14 D			-0.1
	Light bro	wii, ury, m to c sand, trace fines	5w		It Br			<0.1
6-8'								
	Light bro	wn. dry. m to c sand. trace fines	SW		lt Br			<0.1
	2.5.00 010	,,,	5					0.1
8-10'								
Note:								
*Sample col	llected for	analytical nurnoses				Total d	lenth: 10'	

Project:	Project: 22129 Date: 2/2/23							
Client:	Town of	Truro					Com	oletion Depth: 10'
Contrac	tor: Tru	ıro DPW					-	Elevation: TBD
Equipm	ent: Ex	cavator						Inspector: CA
Location	n: Sand	Pit Property; test pit con	npleted near trees and Noons Drive	by sand pil	les		Dep	th to Water: N/A
Propor	rtions	Color	USC	CS Code			Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic Cla	avs of High Pla	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clays	of High Plasti	city (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of Low to Medium			Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity, Sa	andy Organic S	ilts, and Clays (OL)		
		Rust (Ru)	Well-Graded Sand (SW)	Organic Silts	and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Silts	s and Clays (O	H)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)				
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)					
		<u>Angular</u>	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)					
		Round (rnd.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)					
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)					
							TOV	
Feet		Description	Code		Color	Com	iments	(PPM)
0-2'	Light bro	own, dry, m to c sand, trace fines	SW		lt br lt Br			<0.1
2-4'	Light bro	wn, dry, m to c sand, gray sandy clay	SW/SC		lt Br			<0.1
4-6'	Light bro	wn, dry, m to c sand, gray sandy clay	SW/SC		lt Br			<0.1
6-8'	Light bro	wn, dry, m to c sand, gray sandy clay	SW/SC		lt Br			0.1*
	Lig	ht brown, dry, m to c sand	SW		lt Br			<0.1
8-10'								
Note:								
*Sample co	llected for	analytical purposes				Total d	epth: 10'	

Project	: 22129						Date: 2/2/23
Client:	Town of	Truro				Com	oletion Depth: 10'
Contrac	ctor: Tru	ıro DPW					Elevation: TBD
Equipm	ent: Ex	cavator					Inspector: CA
Locatio	n: Sand	Pit Property; test pit con	npleted on southeast plateu of prope	erty		Dep	th to Water: N/A
Propo	rtions	<u>Color</u>	USC	CS Code		Size	Misc.
trace (trc)	0 - 10%	Blue (Bl)	Well-Graded Gravel (GW)	Inorganic Clays of High Pl	asticity, Fat Clays,	Fine = (f)	Fine to Coarse = (f-c)
little (li)	10 - 20%	Red (R)	Poorly-Graded Gravel (GP)	Sandy Clays of High Plast	icity (CH)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Silty Gravels, Gravel-Sand-Silt Mixtures (GM) Clayey Gravels, Gravel-Sand-Clay Mixtures	Organic Silts and Clays of	Low to Medium	Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	(GC)	Plasticity, Sandy Organic Silts, and Clays (OL)			
		Rust (Ru)	Well-Graded Sand (SW)	Organic Silts and Clays of	High Plasticity, Sandy		
		Brown (Br)	Poorly-Graded Sand (SP)	Organic Silts and Clays (O	DH)		
		Orange (Or)	Silty Sands, Sand Silt Mixtures (SM)	Peat (PT)			
		Black (Blk)	Clayey Sands, Sand-Clay Mixtures (SC)				
		<u>Angular</u>	Inorganic Silts, Clayey Silts of Low to Medium Plasticity (ML)				
		Round (md.)	Inorganic Silts, Micaceous, or Diatomaceous Silty Soils, Elastic Silts (MH)				
		Angular (ang.)	Inorganic Clays of Low to Medium Plasticity, Gravely, Sandy, and Silty Clays (CL)				
Denth			USCS				TOV
Feet		Description	Code	Color	Con	nments	(PPM)
				lt br			
0-2'	Lig	ght brown, dry, m to c sand	SW	lt Br			0.1*
2-4'	Lig	ght brown, dry, m to c sand	SW	lt Br			0.5
4-6'	Lig	ght brown, dry, m to c sand	SW	lt Br	Consistent soil t	hroughout test pit	<0.1
6-8'	Lig	ght brown, dry, m to c sand	SW	lt Br			<0.1
8-10'	Lig	ght brown, dry, m to c sand	SW	lt Br			<0.1
Note							
*Sample co	llected for	analytical purposes			Total d	lepth: 10'	

APPENDIX E

LABORATORY REPORTS

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

March 6, 2023

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Sand Pit Rd, Truro, MA Client Job Number: Project Number: 22129 Laboratory Work Order Number: 23B0764

Enclosed are results of analyses for samples as received by the laboratory on February 6, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

1 amples

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
23B0764-01	5
23B0764-02	7
23B0764-03	9
23B0764-04	11
Sample Preparation Information	13
QC Data	14
Semivolatile Organic Compounds by - LC/MS-MS	14
B330939	14
Flag/Qualifier Summary	17
Internal standard Area & RT Summary	18
Certifications	26
Chain of Custody/Sample Receipt	28

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

_

REPORT DATE: 3/6/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 22129

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23B0764

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Sand Pit Rd, Truro, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TP-2 (2-4)	23B0764-01	Soil		SM 2540G	
				SOP-466 PFAS	
TP-5 (0-2)	23B0764-02	Soil		SM 2540G	
				SOP-466 PFAS	
TP-6 (0-2)	23B0764-03	Soil		SM 2540G	
				SOP-466 PFAS	
TP-9 (0-2)	23B0764-04	Soil		SM 2540G	
				SOP-466 PFAS	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-466 PFAS

Qualifications:

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-6:2FTS 23B0764-01[TP-2 (2-4)], 23B0764-02[TP-5 (0-2)], 23B0764-03[TP-6 (0-2)] M2PFTA 23B0764-03[TP-6 (0-2)]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Semivolatile Organic Compounds by - LC/MS-MS

Sample Description:

Date Received: 2/6/2023 Field Sample #: TP-2 (2-4)

Sample ID: 23B0764-01

Sample Matrix: Soil

Sampled: 2/2/2023 12:30

Work Order: 23B0764

Date Date/Time DL Units Dilution Analyte Results RL Flag/Qual Method Prepared Analyzed Analyst Perfluorobutanoic acid (PFBA) ND 0.48 0.19 SOP-466 PFAS 2/17/23 µg/kg dry 1 2/24/23 2:16 RRB Perfluorobutanesulfonic acid (PFBS) ND 0.48 0.17 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluoropentanoic acid (PFPeA) ND 0.48 0.16 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 1 µg/kg dry Perfluorohexanoic acid (PFHxA) ND 2/17/23 0.48 0.17 SOP-466 PFAS 2/24/23 2:16 RRB µg/kg dry 1 11Cl-PF3OUdS (F53B Major) ND SOP-466 PEAS 2/17/23 RRB 0.48 0.20 µg/kg dry 1 2/24/23 2:16 9Cl-PF3ONS (F53B Minor) ND SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 0.48 0.26 µg/kg dry 1 4,8-Dioxa-3H-perfluorononanoic acid ND 0.48 0.14 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB (ADONA) Hexafluoropropylene oxide dimer acid ND 0.480.17 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry (HFPO-DA) 8:2 Fluorotelomersulfonic acid (8:2FTS A) ND 0.48 0.21 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluorodecanoic acid (PFDA) ND SOP-466 PFAS 2/17/23 0.48 0.17 µg/kg dry 1 2/24/23 2:16 RRB Perfluorododecanoic acid (PFDoA) ND 0.48 0.18 ug/kg drv 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluoro(2-ethoxyethane)sulfonic acid ND 0.48 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 0.14 µg/kg dry 1 (PFEESA) Perfluoroheptanesulfonic acid (PFHpS) ND 0.48 0.20 ug/kg drv 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB N-EtFOSAA (NEtFOSAA) ND 0.48 0.16 SOP-466 PEAS 2/17/23 RRB 1 2/24/23 2:16 µg/kg dry N-MeFOSAA (NMeFOSAA) ND SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 0.48 0.20 µg/kg dry 1 Perfluorotetradecanoic acid (PFTA) ND 0.48 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluorotridecanoic acid (PFTrDA) ND 0.480.13 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry 4:2 Fluorotelomersulfonic acid (4:2FTS A) ND 0.48 0.17 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry 1 Perfluorodecanesulfonic acid (PFDS) ND 2/17/23 0.48 0.23 1 SOP-466 PFAS 2/24/23 2:16 RRB µg/kg dry Perfluorooctanesulfonamide (FOSA) ND 0.48 0.18 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluorononanesulfonic acid (PFNS) ND 0.48 0.21 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB $\mu g/kg \ dry$ Perfluoro-1-hexanesulfonamide (FHxSA) ND SOP-466 PFAS 2/17/23 0.48 0.13 µg/kg dry 1 2/24/23 2:16 RRB Perfluoro-1-butanesulfonamide (FBSA) ND 0.48 0.15 2/17/23 RRB µg/kg dry 1 SOP-466 PFAS 2/24/23 2:16 Perfluorohexanesulfonic acid (PFHxS) ND 0.48 0.22 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry 1 Perfluoro-4-oxapentanoic acid (PFMPA) ND 0.48 0.16 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluoro-5-oxahexanoic acid (PFMBA) ND 0.48 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 0.48 0.24 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry Perfluoropetanesulfonic acid (PFPeS) ND 0.480.18 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 µg/kg dry RRB Perfluoroundecanoic acid (PFUnA) ND 0.48 0.16 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Nonafluoro-3,6-dioxaheptanoic acid ND SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB 0.48 0.13 µg/kg dry 1 (NFDHA) Perfluoroheptanoic acid (PFHpA) ND 0.48 0.16 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB Perfluorooctanoic acid (PFOA) ND 0.48 0.16 SOP-466 PFAS 2/17/23 1 2/24/23 2:16 RRB µg/kg dry Perfluorooctanesulfonic acid (PFOS) ND 0.48 0.29 SOP-466 PFAS 2/17/23 2/24/23 2:16 RRB µg/kg dry 1 Perfluorononanoic acid (PFNA) ND 0.48 SOP-466 PEAS 2/17/23 RRB 0.16 1 2/24/23 2.16 µg/kg dry

87.5

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0764 Date Received: 2/6/2023 Field Sample #: TP-2 (2-4) Sampled: 2/2/2023 12:30 Sample ID: 23B0764-01 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Sa

Work Order: 23B0764

Date Received: 2/6/2023 Field Sample #: TP-5 (0-2)

Sample ID: 23B0764-02

Sample Matrix: Soil

ampied: 2	2/2/2023	10:15

		S	Semivolatil	e Organic Com	pounds by - I	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.47	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorobutanesulfonic acid (PFBS)	ND	0.47	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoropentanoic acid (PFPeA)	ND	0.47	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorohexanoic acid (PFHxA)	ND	0.47	0.16	μg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
11Cl-PF3OUdS (F53B Major)	ND	0.47	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
9Cl-PF3ONS (F53B Minor)	ND	0.47	0.25	μg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.47	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.47	0.17	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.47	0.20	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorodecanoic acid (PFDA)	ND	0.47	0.17	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorododecanoic acid (PFDoA)	ND	0.47	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.47	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.47	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
N-EtFOSAA (NEtFOSAA)	ND	0.47	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
N-MeFOSAA (NMeFOSAA)	ND	0.47	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorotetradecanoic acid (PFTA)	ND	0.47	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	0.47	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.47	0.17	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	0.47	0.22	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorooctanesulfonamide (FOSA)	ND	0.47	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorononanesulfonic acid (PFNS)	ND	0.47	0.21	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.47	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.47	0.15	μg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorohexanesulfonic acid (PFHxS)	ND	0.47	0.21	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.47	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.47	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.47	0.23	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoropetanesulfonic acid (PFPeS)	ND	0.47	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoroundecanoic acid (PFUnA)	ND	0.47	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.47	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluoroheptanoic acid (PFHpA)	ND	0.47	0.15	μg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorooctanoic acid (PFOA)	ND	0.47	0.15	μg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorooctanesulfonic acid (PFOS)	ND	0.47	0.29	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB
Perfluorononanoic acid (PFNA)	ND	0.47	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:23	RRB

88.9

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0764 Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sampled: 2/2/2023 10:15 Sample ID: 23B0764-02 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 2/6/2023 Field Sample #: TP-6 (0-2)

Sample ID: 23B0764-03

Sample Matrix: Soil

Sampled: 2/2/2023 08:30

Semivolatile Organic Compounds by - LC/MS-MS Date Date/Time DL Units Dilution Analyte Results RL Flag/Qual Method Prepared Analyzed Analyst Perfluorobutanoic acid (PFBA) ND 0.45 0.18 SOP-466 PFAS 2/17/23 µg/kg dry 1 2/24/23 2:31 RRB Perfluorobutanesulfonic acid (PFBS) ND 0.45 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluoropentanoic acid (PFPeA) ND 0.45 0.15 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB 1 µg/kg dry Perfluorohexanoic acid (PFHxA) ND 2/17/23 2/24/23 2:31 0.45 0.16 SOP-466 PFAS RRB µg/kg dry 1 11Cl-PF3OUdS (F53B Major) ND SOP-466 PEAS 2/17/23 RRB 0.45 0.18 µg/kg dry 1 2/24/23 2:31 9Cl-PF3ONS (F53B Minor) ND SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB 0.45 0.24 µg/kg dry 1 4,8-Dioxa-3H-perfluorononanoic acid ND 0.45 0.13 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB (ADONA) Hexafluoropropylene oxide dimer acid ND 0.45 0.16 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry (HFPO-DA) 8:2 Fluorotelomersulfonic acid (8:2FTS A) ND 0.45 0.19 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluorodecanoic acid (PFDA) ND SOP-466 PFAS 2/17/23 0.45 0.16 µg/kg dry 1 2/24/23 2:31 RRB Perfluorododecanoic acid (PFDoA) ND 0.45 0.17 ug/kg drv 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluoro(2-ethoxyethane)sulfonic acid ND 0.45 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB 0.13 µg/kg dry 1 (PFEESA) Perfluoroheptanesulfonic acid (PFHpS) ND 0.45 0.18 ug/kg drv 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB N-EtFOSAA (NEtFOSAA) ND 0.45 0.15 SOP-466 PEAS 2/17/23 RRB 1 2/24/23 2:31 µg/kg dry N-MeFOSAA (NMeFOSAA) ND 0.45 0.19 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry 1 Perfluorotetradecanoic acid (PFTA) ND 0.45 0.14 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluorotridecanoic acid (PFTrDA) ND 0.45 0.12 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry 4:2 Fluorotelomersulfonic acid (4:2FTS A) ND 0.45 0.16 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry 1 Perfluorodecanesulfonic acid (PFDS) ND 2/17/23 0.45 0.21 1 SOP-466 PFAS 2/24/23 2:31 RRB µg/kg dry Perfluorooctanesulfonamide (FOSA) ND 0.45 0.17 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluorononanesulfonic acid (PFNS) ND 0.45 0.20 $\mu g/kg \ dry$ 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluoro-1-hexanesulfonamide (FHxSA) ND SOP-466 PFAS 2/17/23 0.45 0.12 µg/kg dry 1 2/24/23 2:31 RRB Perfluoro-1-butanesulfonamide (FBSA) ND 0.45 0.14 2/17/23 RRB µg/kg dry 1 SOP-466 PFAS 2/24/23 2:31 Perfluorohexanesulfonic acid (PFHxS) ND 0.45 0.20 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry 1 Perfluoro-4-oxapentanoic acid (PFMPA) ND 0.45 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluoro-5-oxahexanoic acid (PFMBA) ND 0.45 0.14 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB 6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 0.45 0.22 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry Perfluoropetanesulfonic acid (PFPeS) ND 0.45 0.17 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 µg/kg dry RRB Perfluoroundecanoic acid (PFUnA) ND 0.45 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Nonafluoro-3,6-dioxaheptanoic acid ND SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB 0.45 0.13 µg/kg dry 1 (NFDHA) Perfluoroheptanoic acid (PFHpA) ND 0.45 0.15 µg/kg dry 1 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB Perfluorooctanoic acid (PFOA) ND 0.45 0.15 SOP-466 PFAS 2/17/23 1 2/24/23 2:31 RRB µg/kg dry Perfluorooctanesulfonic acid (PFOS) ND 0.45 0.27 SOP-466 PFAS 2/17/23 2/24/23 2:31 RRB µg/kg dry 1 Perfluorononanoic acid (PFNA) ND 0.45 SOP-466 PEAS 2/17/23 RRB 0.15 1 2/24/23 2.31 µg/kg dry

Work Order: 23B0764

93.7

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0764 Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sampled: 2/2/2023 08:30 Sample ID: 23B0764-03 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 2/6/2023 Field Sample #: TP-9 (0-2)

Sample ID: 23B0764-04

Sample Matrix: Soil

Sampled: 2/2/2023 11:00

		5	Semivolatil	le Organic Con	pounds by - l	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.43	0.17	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorobutanesulfonic acid (PFBS)	ND	0.43	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoropentanoic acid (PFPeA)	ND	0.43	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorohexanoic acid (PFHxA)	ND	0.43	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
11Cl-PF3OUdS (F53B Major)	ND	0.43	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
9Cl-PF3ONS (F53B Minor)	ND	0.43	0.23	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.43	0.12	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.43	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.43	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorodecanoic acid (PFDA)	ND	0.43	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorododecanoic acid (PFDoA)	ND	0.43	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.43	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.43	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
N-EtFOSAA (NEtFOSAA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
N-MeFOSAA (NMeFOSAA)	ND	0.43	0.18	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorotetradecanoic acid (PFTA)	ND	0.43	0.13	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	0.43	0.12	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.43	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	0.43	0.20	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorooctanesulfonamide (FOSA)	ND	0.43	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorononanesulfonic acid (PFNS)	ND	0.43	0.19	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.43	0.12	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorohexanesulfonic acid (PFHxS)	ND	0.43	0.20	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.43	0.21	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoropetanesulfonic acid (PFPeS)	ND	0.43	0.16	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoroundecanoic acid (PFUnA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.43	0.12	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluoroheptanoic acid (PFHpA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorooctanoic acid (PFOA)	ND	0.43	0.14	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorooctanesulfonic acid (PFOS)	ND	0.43	0.26	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB
Perfluorononanoic acid (PFNA)	ND	0.43	0.15	µg/kg dry	1		SOP-466 PFAS	2/17/23	2/24/23 2:38	RRB

Work Order: 23B0764

96.6

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0764 Date Received: 2/6/2023 Field Sample #: TP-9 (0-2) Sampled: 2/2/2023 11:00 Sample ID: 23B0764-04 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Sample Extraction Data

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
23B0764-01 [TP-2 (2-4)]	B330944	02/08/23
23B0764-02 [TP-5 (0-2)]	B330944	02/08/23
23B0764-03 [TP-6 (0-2)]	B330944	02/08/23
23B0764-04 [TP-9 (0-2)]	B330944	02/08/23

Prep Method: SOP 465-PFAAS Analytical Method: SOP-466 PFAS

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0764-01 [TP-2 (2-4)]	B330939	5.92	5.00	02/17/23
23B0764-02 [TP-5 (0-2)]	B330939	5.96	5.00	02/17/23
23B0764-03 [TP-6 (0-2)]	B330939	5.91	5.00	02/17/23
23B0764-04 [TP-9 (0-2)]	B330939	5.96	5.00	02/17/23

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting	TT '-	Spike	Source	0/252	%REC	DDC	RPD	N
Anaiyte	Result	Limit	Units	Level	Kesult	%REC	Limits	КРD	Limit	Notes
Batch B330939 - SOP 465-PFAAS										
Blank (B330939-BLK1)				Prepared: 02/	17/23 Analy	zed: 02/23/2	3			
Perfluorobutanoic acid (PFBA)	ND	0.44	$\mu g/kg$ wet							
Perfluorobutanesulfonic acid (PFBS)	ND	0.44	$\mu g/kg$ wet							
Perfluoropentanoic acid (PFPeA)	ND	0.44	$\mu g/kg$ wet							
Perfluorohexanoic acid (PFHxA)	ND	0.44	µg/kg wet							
11Cl-PF3OUdS (F53B Major)	ND	0.44	µg/kg wet							
9CI-PF3ONS (F53B Minor)	ND	0.44	µg/kg wet							
4,8-Dioxa-3H-perfluorononanoic acid	ND	0.44	µg/kg wet							
Hexafluoropropylene oxide dimer acid	ND	0.44	$\mu g/kg$ wet							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.44	µg/kg wet							
Perfluorodecanoic acid (PFDA)	ND	0.44	μg/kg wet							
Perfluorododecanoic acid (PFDoA)	ND	0.44	μg/kg wet							
Perfluoro(2-ethoxyethane)sulfonic acid	ND	0.44	μg/kg wet							
(PFEESA)										
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.44	$\mu g/kg$ wet							
N-EtFOSAA (NEtFOSAA)	ND	0.44	$\mu g/kg$ wet							
N-MeFOSAA (NMeFOSAA)	ND	0.44	µg/kg wet							
Perfluorotetradecanoic acid (PFTA)	ND	0.44	µg/kg wet							
Perfluorotridecanoic acid (PFTrDA)	ND	0.44	µg/kg wet							
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.44	µg/kg wet							
Perfluorodecanesulfonic acid (PFDS)	ND	0.44	µg/kg wet							
Perfluorooctanesulfonamide (FOSA)	ND	0.44	μg/kg wet							
Perfluorononanesulfonic acid (PFNS)	ND	0.44	µg/kg wet							
Perfluoro-1-hexanesulfonamide (FHXSA)	ND	0.44	µg/kg wet							
Perfluoro-1-butanesultonamide (FBSA)	ND	0.44	µg/kg wet							
Parfluoro 4 exepentancia acid (PFMXS)	ND	0.44	µg/kg wet							
Perfluoro 5 ovabevanoic acid (PFMPA)	ND	0.44	µg/kg wet							
6:2 Eluorotelomerculfonic acid (6:2ETS A)	ND	0.44	µg/kg wet							
Perfluoropetanesulfonic acid (PEPeS)	ND	0.44	µg/kg wet							
Perfluoroundecanoic acid (PFUnA)	ND	0.44	µg/kg wet							
Nonafluoro-3,6-dioxaheptanoic acid	ND	0.44	μg/kg wet							
(NFDHA) Perfluorohentanoic acid (PFHpA)	ND	0 44	uø/kø wet							
Perfluorooctanoic acid (PFOA)	ND	0.11	uø/kø wet							
Perfluorooctanesulfonic acid (PFOS)	ND	0.44	ug/kg wet							
Perfluorononanoic acid (PFNA)	ND	0.44	μg/kg wet							
LCS (B330939-BS1)				Prepared: 02/	17/23 Analy:	zed: 02/23/2	3			
Perfluorobutanoic acid (PFBA)	2.07	0.44	µg/kg wet	2.22		93.1	71-135			
Perfluorobutanesulfonic acid (PFBS)	1.76	0.44	μg/kg wet	1.97		89.5	72-128			
Perfluoropentanoic acid (PFPeA)	2.03	0.44	μg/kg wet	2.22		91.3	69-132			
Perfluorohexanoic acid (PFHxA)	2.08	0.44	μg/kg wet	2.22		93.4	70-132			
11Cl-PF3OUdS (F53B Major)	2.01	0.44	µg/kg wet	2.10		95.7	41.8-128			
9Cl-PF3ONS (F53B Minor)	1.83	0.44	µg/kg wet	2.07		88.4	51.1-141			
4,8-Dioxa-3H-perfluorononanoic acid	1.89	0.44	µg/kg wet	2.10		90.0	55.2-122			
(ADONA) Hexafluoropropylene oxide dimer acid	1.84	0.44	μg/kg wet	2.22		82.8	27.6-137			
(HFPO-DA)		. ···	4	<i></i>						
8:2 Fluorotelomersultonic acid (8:2FTS A)	1.99	0.44	µg/kg wet	2.14		93.4	65-137			
Perfluorodecanoic acid (PFDA)	1.90	0.44	µg/kg wet	2.22		85.5	69-133			
Perfluoro(2, ethoxyetheno)cultonic acid	1.91	0.44	µg/kg wet	1.00		83.8 102	567122			
(PFEESA)	2.03	0.44	µg/ng wel	1.98		105	50.7-155			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330939 - SOP 465-PFAAS										
L (S (D320020 DS1)				Prepared: 02	17/23 Analy	zed: 02/23/2	2			
Derfluerekentenervilfenie eeid (DEUrS)		0.44	u o/leo mot	2 12	./1//25 Analy.	01.5	70,122			
N $E = COS A A (NE = E OS A A)$	1.95	0.44	µg/kg wet	2.13		91.5	/0-132			
	1.73	0.44	µg/kg wet	2.22		//.0	62 144			
Perfluorotetradecanoic acid (PETA)	2.43	0.44	µg/kg wet	2.22		87.0	60 122			
Perfluorotridecanoic acid (PFTrDA)	1.94	0.44	ug/kg wet	2.22		87.0	66 120			
4.2 Eluorotelomerculfonic acid (4.2ETS A)	1.99	0.44	µg/kg wet	2.22		89.2	62 145			
Perfluorodecanecultonic acid (PEDS)	1.79	0.44	µg/kg wet	2.08		80.0	62-145 50 124			
Perfluoroactanesulfonamide (EOSA)	1.80	0.44	ug/kg wet	2.14		03.0 97.6	59-154 67 127			
Perflueronenanoulfania acid (PENS)	1.95	0.44	µg/kg wet	2.22		87.0	0/-13/			
Perfuere 1 heveneoulfenemide (EUVSA)	1.85	0.44	µg/kg wet	2.14		80.4	69-125			
Perfluere 1 butenegulfenemide (EPSA)	1.97	0.44	µg/kg wet	2.22		88.5	52 5 120			
Perfluerohoveneoulfenie egid (PEHvS)	2.05	0.44	µg/kg wet	2.22		92.2	55.5-129			
Perfluere 4 exemptancia acid (PEMPA)	1.//	0.44	µg/kg wet	2.04		02.4	67-130			
Perfluere 5 exchavencie acid (PFMPA)	2.06	0.44	µg/kg wet	2.22		92.4	5/.8-12/			
6.2 Elucrotalomerculfonia acid (6.2ETS A)	2.22	0.44	µg/kg wet	2.22		99.0	50.5-152			
Derfluerenetenesulfenie acid (DEDeS)	2.11	0.44	µg/kg wet	2.11		99.8	04-140			
Perflueroundeegneis seid (PEUnA)	1.80	0.44	µg/kg wet	2.09		80.3	/3-125			
Narafluara 2.6 diayahartangia gaid	1.97	0.44	µg/kg wet	2.22		88.4	64-136			
(NFDHA)	2.36	0.44	µg/kg wei	2.22		100	54.5-128			
Perfluoroheptanoic acid (PFHpA)	2.12	0.44	μg/kg wet	2.22		95.5	71-131			
Perfluorooctanoic acid (PFOA)	1.91	0.44	μg/kg wet	2.22		85.9	69-133			
Perfluorooctanesulfonic acid (PFOS)	1.94	0.44	μg/kg wet	2.06		94.3	68-136			
Perfluorononanoic acid (PFNA)	2.06	0.44	μg/kg wet	2.22		92.6	72-129			
	G			D 1.02	17/02 1	1 02/22/2				
Matrix Spike (B330939-MS1)	Sou	rce: 23B0764-	-01	Prepared: 02	2/17/23 Analy	zed: 02/23/2	.3			
Perfluorobutanoic acid (PFBA)	2.84	0.50	µg/kg dry	2.53	ND	112	71-135			
Perfluorobutanesultonic acid (PFBS)	2.33	0.50	µg/kg dry	2.24	ND	104	72-128			
Perfluoropentanoic acid (PFPeA)	2.67	0.50	µg/kg dry	2.53	ND	106	69-132			
Perfluoronexanoic acid (PFHXA)	2.79	0.50	µg/kg dry	2.53	ND	110	70-132			
IICI-PF3OUdS (F53B Major)	2.92	0.50	µg/kg dry	2.39	ND	122	4.02-158			
9CI-PF3ONS (F33B Minor)	2.60	0.50	µg/kg ary	2.36	ND	110	52.5-150			
(ADONA)	2.60	0.50	µg/kg ary	2.39	ND	109	50.7-124			
Hexafluoropropylene oxide dimer acid	2.75	0.50	µg/kg dry	2.53	ND	109	29.2-146			
(HFPO-DA)	2170				112					
8:2 Fluorotelomersulfonic acid (8:2FTS A)	2.67	0.50	µg/kg dry	2.43	ND	110	65-137			
Perfluorodecanoic acid (PFDA)	2.52	0.50	µg/kg dry	2.53	ND	99.5	69-133			
Perfluorododecanoic acid (PFDoA)	2.51	0.50	µg/kg dry	2.53	ND	99.0	69-135			
Perfluoro(2-ethoxyethane)sulfonic acid	2.64	0.50	µg/kg dry	2.26	ND	117	60.7-135			
(PFEESA)		0.50	<i>a</i> 1	a (a		100				
Perfluoroneptanesulionic acid (PFHpS)	2.57	0.50	µg/kg dry	2.42	ND	106	70-132			
N-EIFOSAA (NEIFOSAA)	2.48	0.50	µg/kg dry	2.53	ND	97.9	61-139			
N-MEFOSAA (NMEFOSAA)	3.33	0.50	µg/kg dry	2.53	ND	131	63-144			
Perfluerotatidecanoic acid (PFTA)	2.70	0.50	µg/kg dry	2.53	ND	106	69-133			
42 Elveretelementulfanie ecid (A2ETS A)	2.71	0.50	µg/kg dry	2.53	ND	107	66-139			
4.2 Fluoroteromersulfonic acid (4.2 FISA)	2.30	0.50	µg/kg dry	2.37	ND	97.1	62-145			
Perfluere esteresulferencide (EOSA)	2.39	0.50	µg/kg dry	2.44	ND	97.7	59-134			
Perflueronenenenenenen esid (PENS)	2.40	0.50	µg/kg dry	2.53	ND	94.7	6/-13/			
Parfluoro 1 havanesulfonomido (EUvSA)	2.48	0.50	µg/kg dry	2.43	ND	102	09-125			
Parfluoro 1 hutanogulfanomida (FRSA)	2.68	0.50	µg/kg ary	2.53	ND	106	18.9-162			
Perfluorohevenesulfonic acid (PEUvS)	2.66	0.50	µg/kg ary	2.53	ND	105	49.8-133			
Perfluoro 4 ovapentanoic acid (PEMDA)	2.52	0.50	µg/kg ury	2.32	ND	109	62 155			
Derfluoro 5 ovehevencie ecid (DEMDA)	2.73	0.50	µg/kg ury	2.53	ND	108	02-100			
remuoro-o-oxaliexalioie aciu (remidA)	2.96	0.50	µg/kg ury	2.55	ND	11/	32.1-148			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		D (1 0	~		NALO		DDD	
Analyte	Result	Limit	Units	Spike	Source Result	%REC	%REC Limits	RPD	KPD Limit	Notes
That ye	resurt	Linit	emis	Lever	result	Juitee	Linits	Iu D	Linit	110105
Batch B330939 - SOP 465-PFAAS										
Matrix Spike (B330939-MS1)	Sou	rce: 23B0764	-01	Prepared: 02	2/17/23 Analyz	zed: 02/23/	23			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	2.31	0.50	µg/kg dry	2.41	ND	96.1	64-140			
Perfluoropetanesulfonic acid (PFPeS)	2.39	0.50	µg/kg dry	2.38	ND	100	73-123			
Perfluoroundecanoic acid (PFUnA)	2.59	0.50	µg/kg dry	2.53	ND	102	64-136			
Nonafluoro-3,6-dioxaheptanoic acid	3.13	0.50	µg/kg dry	2.53	ND	123	54.6-133			
(NFDHA)										
Perfluoroheptanoic acid (PFHpA)	2.79	0.50	µg/kg dry	2.53	ND	110	71-131			
Perfluorooctanoic acid (PFOA)	2.56	0.50	µg/kg dry	2.53	ND	101	69-133			
Perfluorooctanesulfonic acid (PFOS)	2.36	0.50	µg/kg dry	2.34	ND	101	68-136			
Perfluorononanoic acid (PFNA)	2.62	0.50	µg/kg dry	2.53	ND	103	72-129			
Matrix Spike Dup (B330939-MSD1)	Sou	rce: 23B0764	-01	Prepared: 02	2/17/23 Analy:	zed: 02/24/	23			
Perfluorobutanoic acid (PFBA)	2 90	0.50	µg/kg dry	2.53	ND	115	71-135	2.29	30	
Perfluorobutanesulfonic acid (PFBS)	2.50	0.50	μg/kg dry	2.24	ND	108	72-128	3.34	30	
Perfluoropentanoic acid (PFPeA)	2.41	0.50	ug/kg drv	2.53	ND	111	69-132	4 59	30	
Perfluorohexanoic acid (PFHxA)	2.80	0.50	ug/kg drv	2.53	ND	114	70-132	3 45	30	
11Cl-PF3OUdS (F53B Major)	2.89	0.50	uø/kø drv	2.35	ND	115	4 02-158	5.90	30	
9Cl-PF3ONS (F53B Minor)	2.75	0.50	ug/kg dry	2.57	ND	00.0	52 5 150	10.7	30	
4 8-Dioxa-3H-perfluorononanoic acid	2.54	0.50	ug/kg dry	2.30	ND	100	50 7 124	0.464	30	
(ADONA)	2.61	0.50	µg/kg ury	2.39	ND	109	30.7-124	0.404	30	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	2.79	0.50	µg/kg dry	2.53	ND	110	29.2-146	1.57	30	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	2.90	0.50	µg/kg dry	2.43	ND	119	65-137	8.14	30	
Perfluorodecanoic acid (PFDA)	2.55	0.50	µg/kg dry	2.53	ND	101	69-133	1.14	30	
Perfluorododecanoic acid (PFDoA)	2.41	0.50	µg/kg dry	2.53	ND	95.3	69-135	3.86	30	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	2.70	0.50	µg/kg dry	2.25	ND	120	60.7-135	2.28	30	
Perfluoroheptanesulfonic acid (PFHpS)	2.77	0.50	μg/kg dry	2.42	ND	114	70-132	7.56	30	
N-EtFOSAA (NEtFOSAA)	3.15	0.50	µg/kg dry	2.53	ND	124	61-139	23.8	30	
N-MeFOSAA (NMeFOSAA)	3.00	0.50	µg/kg dry	2.53	ND	119	63-144	10.3	30	
Perfluorotetradecanoic acid (PFTA)	2.59	0.50	µg/kg dry	2.53	ND	102	69-133	4.22	30	
Perfluorotridecanoic acid (PFTrDA)	2.51	0.50	μg/kg dry	2.53	ND	99.1	66-139	7.57	30	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	2.61	0.50	μg/kg dry	2.37	ND	102	62-145	5.37	30	
Perfluorodecanesulfonic acid (PFDS)	2.55	0.50	μg/kg dry	2.44	ND	105	59-134	6.70	30	
Perfluorooctanesulfonamide (FOSA)	2.35	0.50	ug/kg drv	2.53	ND	90.6	67-137	4 47	30	
Perfluorononanesulfonic acid (PFNS)	2.50	0.50	ug/kg drv	2.43	ND	105	69-125	2.32	30	
Perfluoro-1-hexanesulfonamide (FHxSA)	2.54	0.50	ug/kg drv	2.53	ND	105	18 9-162	0.767	30	
Perfluoro-1-butanesulfonamide (FBSA)	2.00	0.50	ug/kg drv	2.53	ND	107	49.8-135	1 74	30	
Perfluorohexanesulfonic acid (PEHxS)	2.71	0.50	ug/kg dry	2.35	ND	107	67 130	7.02	30	
Perfluoro-4-oxapentanoic acid (PEMPA)	2.33	0.50	ug/kg dry	2.52	ND	110	62 155	2.15	30	
Perfluoro-5-ovabevanoic acid (PEMBA)	2.79	0.50	ug/kg dry	2.55	ND	110	52 1 148	2.15	20	
6.2 Eluorotelomersulfonic acid (6.2ETS A)	3.02	0.50	ug/kg dry	2.55	ND	02 A	52.1-140 64 140	2.14	20	
Derflueren eten egylfanie acid (DEDeS)	2.01	0.50	µg/kg ury	2.41	ND	03.4	04-140	14.1	30	
Perfluoropetanesunonic acid (PFPeS)	2.45	0.30	µg/kg dry	2.38	ND	103	/3-123	2.59	30	
New from 2 (dissolvent i i	2.93	0.50	µg/kg dry	2.53	ND	116	64-136	12.2	30	
(NFDHA)	3.17	0.50	µg/kg ary	2.53	ND	125	54.0-133	1.29	30	
Perfluoroheptanoic acid (PFHpA)	2.78	0.50	µg/kg dry	2.53	ND	110	71-131	0.579	30	
Perfluorooctanoic acid (PFOA)	2.67	0.50	µg/kg dry	2.53	ND	106	69-133	4.52	30	
Perfluorooctanesulfonic acid (PFOS)	2.39	0.50	µg/kg dry	2.34	ND	102	68-136	1.13	30	
Perfluorononanoic acid (PFNA)	2.77	0.50	µg/kg dry	2.53	ND	109	72-129	5.51	30	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.

S-29 Extracted Internal Standard is outside of control limits.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
TP-2 (2-4) (23B0764-01)		1	Lab File ID: 23B0764-01.d			Analyzed: 02/24/23 02:16			
M8FOSA	300947	4.0845	394,923.00	4.0845	76	50 - 150	0.0000	+/-0.50	Τ
M2-4:2FTS	120914.2	2.62	165,484.00	2.62	73	50 - 150	0.0000	+/-0.50	
M2PFTA	601618.6	4.362167	1,024,322.00	4.362167	59	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	153685.7	3.850933	215,848.00	3.850933	71	50 - 150	0.0000	+/-0.50	
MPFBA	456304.5	1.12495	534,345.00	1.12495	85	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	97466.73	2.945967	107,660.00	2.945967	91	50 - 150	0.0000	+/-0.50	
M6PFDA	674844.6	3.851417	766,328.00	3.851417	88	50 - 150	0.0000	+/-0.50	
M3PFBS	126235.3	2.011067	149,852.00	2.011067	84	50 - 150	0.0000	+/-0.50	
M7PFUnA	749346.8	3.994	839,980.00	3.994	89	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	54052.39	3.501317	121,538.00	3.501317	44	50 - 150	0.0000	+/-0.50	*
M5PFPeA	389824.4	1.816233	446,990.00	1.816233	87	50 - 150	0.0000	+/-0.50	
M5PFHxA	630695.6	2.7145	782,300.00	2.706317	81	50 - 150	0.0082	+/-0.50	
M3PFHxS	85135.62	3.28425	128,330.00	3.28425	66	50 - 150	0.0000	+/-0.50	
M4PFHpA	600563	3.251867	884,017.00	3.251867	68	50 - 150	0.0000	+/-0.50	
M8PFOA	561433	3.51815	743,619.00	3.51815	76	50 - 150	0.0000	+/-0.50	
M8PFOS	110406.2	3.700067	128,346.00	3.700067	86	50 - 150	0.0000	+/-0.50	
M9PFNA	489055.2	3.7011	663,153.00	3.7011	74	50 - 150	0.0000	+/-0.50	
MPFDoA	597691.3	4.1288	865,995.00	4.1288	69	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	154245.8	4.001467	210,785.00	4.001467	73	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	179448.9	3.921883	266,645.00	3.9219	67	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
TP-5 (0-2) (23B0764-02)			Lab File ID: 23B0	764-02.d		Analyzed: 02/24/23 02:23			
M8FOSA	302262.9	4.0845	394,923.00	4.0845	77	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	97141.35	2.62	165,484.00	2.62	59	50 - 150	0.0000	+/-0.50	
M2PFTA	634947.5	4.362167	1,024,322.00	4.362167	62	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	150172.7	3.850933	215,848.00	3.850933	70	50 - 150	0.0000	+/-0.50	
MPFBA	417459	1.12495	534,345.00	1.12495	78	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	86172.77	2.945967	107,660.00	2.945967	80	50 - 150	0.0000	+/-0.50	
M6PFDA	580702.9	3.851417	766,328.00	3.851417	76	50 - 150	0.0000	+/-0.50	
M3PFBS	120749.9	2.002783	149,852.00	2.011067	81	50 - 150	-0.0083	+/-0.50	
M7PFUnA	689776.8	3.994	839,980.00	3.994	82	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	47517.57	3.501317	121,538.00	3.501317	39	50 - 150	0.0000	+/-0.50	*
M5PFPeA	357549.3	1.816233	446,990.00	1.816233	80	50 - 150	0.0000	+/-0.50	
M5PFHxA	586050.2	2.706317	782,300.00	2.706317	75	50 - 150	0.0000	+/-0.50	
M3PFHxS	82654.92	3.28425	128,330.00	3.28425	64	50 - 150	0.0000	+/-0.50	
M4PFHpA	589917.9	3.251867	884,017.00	3.251867	67	50 - 150	0.0000	+/-0.50	
M8PFOA	517576.7	3.51815	743,619.00	3.51815	70	50 - 150	0.0000	+/-0.50	
M8PFOS	108693.4	3.700067	128,346.00	3.700067	85	50 - 150	0.0000	+/-0.50	
M9PFNA	474739.5	3.7011	663,153.00	3.7011	72	50 - 150	0.0000	+/-0.50	
MPFDoA	602464.6	4.1288	865,995.00	4.1288	70	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	159472.5	4.001467	210,785.00	4.001467	76	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	180544.5	3.921883	266,645.00	3.9219	68	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
TP-6 (0-2) (23B0764-03)	P-6 (0-2) (23B0764-03)			764-03.d		Analyzed: 02/24/23 02:31			
M8FOSA	345409.3	4.0845	394,923.00	4.0845	87	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	90752.05	2.62	165,484.00	2.62	55	50 - 150	0.0000	+/-0.50	
M2PFTA	489346.8	4.362167	1,024,322.00	4.362167	48	50 - 150	0.0000	+/-0.50	*
M2-8:2FTS	151829.9	3.850933	215,848.00	3.850933	70	50 - 150	0.0000	+/-0.50	
MPFBA	454310.1	1.12495	534,345.00	1.12495	85	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	88611.55	2.945967	107,660.00	2.945967	82	50 - 150	0.0000	+/-0.50	
M6PFDA	655594.4	3.851417	766,328.00	3.851417	86	50 - 150	0.0000	+/-0.50	
M3PFBS	120466.8	2.002783	149,852.00	2.011067	80	50 - 150	-0.0083	+/-0.50	
M7PFUnA	695907.3	3.994	839,980.00	3.994	83	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	46419.98	3.501317	121,538.00	3.501317	38	50 - 150	0.0000	+/-0.50	*
M5PFPeA	379111.6	1.816233	446,990.00	1.816233	85	50 - 150	0.0000	+/-0.50	
M5PFHxA	589614.6	2.7145	782,300.00	2.706317	75	50 - 150	0.0082	+/-0.50	
M3PFHxS	79888.6	3.28425	128,330.00	3.28425	62	50 - 150	0.0000	+/-0.50	
M4PFHpA	558762.8	3.251867	884,017.00	3.251867	63	50 - 150	0.0000	+/-0.50	
M8PFOA	479048.1	3.51815	743,619.00	3.51815	64	50 - 150	0.0000	+/-0.50	
M8PFOS	99866.8	3.700067	128,346.00	3.700067	78	50 - 150	0.0000	+/-0.50	
M9PFNA	502964.5	3.7011	663,153.00	3.7011	76	50 - 150	0.0000	+/-0.50	
MPFDoA	524075.5	4.1288	865,995.00	4.1288	61	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	137766.5	4.001467	210,785.00	4.001467	65	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	178008.4	3.921883	266,645.00	3.9219	67	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
TP-9 (0-2) (23B0764-04)			Lab File ID: 23B0	764-04.d		Analyzed: 02/24	4/23 02:38		
M8FOSA	310232.7	4.0845	394,923.00	4.0845	79	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	114961.9	2.62	165,484.00	2.62	69	50 - 150	0.0000	+/-0.50	
M2PFTA	515894.7	4.362167	1,024,322.00	4.362167	50	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	153474.9	3.850933	215,848.00	3.850933	71	50 - 150	0.0000	+/-0.50	
MPFBA	452856.7	1.12495	534,345.00	1.12495	85	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	99877.44	2.945967	107,660.00	2.945967	93	50 - 150	0.0000	+/-0.50	
M6PFDA	709595.2	3.851417	766,328.00	3.851417	93	50 - 150	0.0000	+/-0.50	
M3PFBS	124727.7	2.011067	149,852.00	2.011067	83	50 - 150	0.0000	+/-0.50	
M7PFUnA	649209.2	3.994	839,980.00	3.994	77	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	62043.43	3.509617	121,538.00	3.501317	51	50 - 150	0.0083	+/-0.50	
M5PFPeA	384309.6	1.816233	446,990.00	1.816233	86	50 - 150	0.0000	+/-0.50	
M5PFHxA	596509.5	2.7145	782,300.00	2.706317	76	50 - 150	0.0082	+/-0.50	
M3PFHxS	79033.83	3.28425	128,330.00	3.28425	62	50 - 150	0.0000	+/-0.50	
M4PFHpA	569208.8	3.251867	884,017.00	3.251867	64	50 - 150	0.0000	+/-0.50	
M8PFOA	478448.1	3.51815	743,619.00	3.51815	64	50 - 150	0.0000	+/-0.50	
M8PFOS	110955.8	3.700067	128,346.00	3.700067	86	50 - 150	0.0000	+/-0.50	
M9PFNA	481326.1	3.7011	663,153.00	3.7011	73	50 - 150	0.0000	+/-0.50	
MPFDoA	546628.7	4.1288	865,995.00	4.1288	63	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	147042.8	4.001467	210,785.00	4.001467	70	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	178367.7	3.921883	266,645.00	3.9219	67	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B330939-BLK1)			Lab File ID: B3309	939-BLK1.d		Analyzed: 02/2	3/23 23:51		
M8FOSA	421470.3	4.0845	394,923.00	4.0845	107	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	158113.9	2.62	165,484.00	2.628217	96	50 - 150	-0.0082	+/-0.50	
M2PFTA	1105172	4.362167	1,024,322.00	4.362184	108	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	211276	3.850933	215,848.00	3.850933	98	50 - 150	0.0000	+/-0.50	
MPFBA	649940.9	1.12495	534,345.00	1.13325	122	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	145393.9	2.93785	107,660.00	2.945967	135	50 - 150	-0.0081	+/-0.50	
M6PFDA	836222.3	3.851417	766,328.00	3.851417	109	50 - 150	0.0000	+/-0.50	
M3PFBS	180118.8	2.011067	149,852.00	2.011067	120	50 - 150	0.0000	+/-0.50	
M7PFUnA	900336.4	3.994	839,980.00	3.994	107	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	103663	3.501317	121,538.00	3.509617	85	50 - 150	-0.0083	+/-0.50	
M5PFPeA	531164.2	1.816233	446,990.00	1.824517	119	50 - 150	-0.0083	+/-0.50	
M5PFHxA	910548	2.7145	782,300.00	2.7145	116	50 - 150	0.0000	+/-0.50	
M3PFHxS	149082.2	3.28425	128,330.00	3.2923	116	50 - 150	-0.0080	+/-0.50	
M4PFHpA	1018590	3.251867	884,017.00	3.25995	115	50 - 150	-0.0081	+/-0.50	
M8PFOA	899575.7	3.51815	743,619.00	3.51815	121	50 - 150	0.0000	+/-0.50	
M8PFOS	147551.1	3.700067	128,346.00	3.700067	115	50 - 150	0.0000	+/-0.50	
M9PFNA	783860.5	3.7011	663,153.00	3.7011	118	50 - 150	0.0000	+/-0.50	
MPFDoA	937845.8	4.1288	865,995.00	4.1288	108	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	233632.3	4.001467	210,785.00	4.001467	111	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	278997.9	3.921883	266,645.00	3.9219	105	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B330939-BS1)			Lab File ID: B3309	939-BS1.d		Analyzed: 02/2	3/23 23:44		
M8FOSA	402115.1	4.0845	394,923.00	4.0845	102	50 - 150	0.0000	+/-0.50	Τ
M2-4:2FTS	163821.7	2.628217	165,484.00	2.628217	99	50 - 150	0.0000	+/-0.50	
M2PFTA	1002348	4.362184	1,024,322.00	4.362184	98	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	201221	3.850933	215,848.00	3.850933	93	50 - 150	0.0000	+/-0.50	
MPFBA	574254.8	1.13325	534,345.00	1.13325	107	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	108951.7	2.945967	107,660.00	2.945967	101	50 - 150	0.0000	+/-0.50	
M6PFDA	807082.8	3.851417	766,328.00	3.851417	105	50 - 150	0.0000	+/-0.50	
M3PFBS	163993.6	2.011067	149,852.00	2.011067	109	50 - 150	0.0000	+/-0.50	
M7PFUnA	890316.9	3.994	839,980.00	3.994	106	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	103961.6	3.509617	121,538.00	3.509617	86	50 - 150	0.0000	+/-0.50	
M5PFPeA	471044.4	1.824517	446,990.00	1.824517	105	50 - 150	0.0000	+/-0.50	
M5PFHxA	804793	2.7145	782,300.00	2.7145	103	50 - 150	0.0000	+/-0.50	
M3PFHxS	142839.7	3.2923	128,330.00	3.2923	111	50 - 150	0.0000	+/-0.50	
M4PFHpA	871458.7	3.25995	884,017.00	3.25995	99	50 - 150	0.0000	+/-0.50	
M8PFOA	791614.9	3.51815	743,619.00	3.51815	106	50 - 150	0.0000	+/-0.50	
M8PFOS	124113.2	3.700067	128,346.00	3.700067	97	50 - 150	0.0000	+/-0.50	
M9PFNA	684472.9	3.7011	663,153.00	3.7011	103	50 - 150	0.0000	+/-0.50	
MPFDoA	838641	4.1288	865,995.00	4.1288	97	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	230636.5	4.001467	210,785.00	4.001467	109	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	235779	3.929883	266,645.00	3.9219	88	50 - 150	0.0080	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Matrix Spike (B330939-MS1)			Lab File ID: B3309	939-MS1.d		Analyzed: 02/2	3/23 23:58		
M8FOSA	429962.2	4.0845	394,923.00	4.0845	109	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	172599.3	2.628217	165,484.00	2.628217	104	50 - 150	0.0000	+/-0.50	
M2PFTA	1093578	4.362167	1,024,322.00	4.362184	107	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	207382.7	3.850933	215,848.00	3.850933	96	50 - 150	0.0000	+/-0.50	
MPFBA	636566.7	1.13325	534,345.00	1.13325	119	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	120884.8	2.945967	107,660.00	2.945967	112	50 - 150	0.0000	+/-0.50	
M6PFDA	833916.4	3.851417	766,328.00	3.851417	109	50 - 150	0.0000	+/-0.50	
M3PFBS	179950.6	2.011067	149,852.00	2.011067	120	50 - 150	0.0000	+/-0.50	
M7PFUnA	997589.6	3.994	839,980.00	3.994	119	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	109388.3	3.509617	121,538.00	3.509617	90	50 - 150	0.0000	+/-0.50	
M5PFPeA	523214	1.824517	446,990.00	1.824517	117	50 - 150	0.0000	+/-0.50	
M5PFHxA	894389.8	2.7145	782,300.00	2.7145	114	50 - 150	0.0000	+/-0.50	
M3PFHxS	152440.4	3.2923	128,330.00	3.2923	119	50 - 150	0.0000	+/-0.50	
M4PFHpA	976819.9	3.25995	884,017.00	3.25995	110	50 - 150	0.0000	+/-0.50	
M8PFOA	855600.1	3.51815	743,619.00	3.51815	115	50 - 150	0.0000	+/-0.50	
M8PFOS	141020.1	3.700067	128,346.00	3.700067	110	50 - 150	0.0000	+/-0.50	
M9PFNA	762739.5	3.7011	663,153.00	3.7011	115	50 - 150	0.0000	+/-0.50	
MPFDoA	919400.8	4.1288	865,995.00	4.1288	106	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	223729.1	4.001467	210,785.00	4.001467	106	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	245159.6	3.9219	266,645.00	3.9219	92	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Matrix Spike Dup (B330939-MSD1)			Lab File ID: B3309	939-MSD1.d		Analyzed: 02/2-	4/23 00:06		
M8FOSA	518139	4.0845	394,923.00	4.0845	131	50 - 150	0.0000	+/-0.50	Τ
M2-4:2FTS	216811.2	2.628217	165,484.00	2.628217	131	50 - 150	0.0000	+/-0.50	
M2PFTA	1468173	4.362184	1,024,322.00	4.362184	143	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	253457.4	3.850933	215,848.00	3.850933	117	50 - 150	0.0000	+/-0.50	
MPFBA	754265.1	1.13325	534,345.00	1.13325	141	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	159801.9	2.945967	107,660.00	2.945967	148	50 - 150	0.0000	+/-0.50	
M6PFDA	1024114	3.851417	766,328.00	3.851417	134	50 - 150	0.0000	+/-0.50	
M3PFBS	214852.5	2.011067	149,852.00	2.011067	143	50 - 150	0.0000	+/-0.50	
M7PFUnA	1148830	3.994	839,980.00	3.994	137	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	154677.6	3.509617	121,538.00	3.509617	127	50 - 150	0.0000	+/-0.50	
M5PFPeA	624789.1	1.824517	446,990.00	1.824517	140	50 - 150	0.0000	+/-0.50	
M5PFHxA	1076215	2.7145	782,300.00	2.7145	138	50 - 150	0.0000	+/-0.50	
M3PFHxS	187419.9	3.2923	128,330.00	3.2923	146	50 - 150	0.0000	+/-0.50	
M4PFHpA	1177118	3.25995	884,017.00	3.25995	133	50 - 150	0.0000	+/-0.50	
M8PFOA	1113367	3.51815	743,619.00	3.51815	150	50 - 150	0.0000	+/-0.50	
M8PFOS	164529.2	3.700067	128,346.00	3.700067	128	50 - 150	0.0000	+/-0.50	
M9PFNA	905596.2	3.7011	663,153.00	3.7011	137	50 - 150	0.0000	+/-0.50	
MPFDoA	1149803	4.1288	865,995.00	4.1288	133	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	248896.2	4.001467	210,785.00	4.001467	118	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	330357.6	3.929883	266,645.00	3.9219	124	50 - 150	0.0080	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
SOP-466 PFAS in Soil	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP-466 PFAS in Soil	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
~	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023

Page 0f	² Preservation Code	Courier Use Only Total Number Of:	VIALS AND	PLASTIC	ENCORE	Glasswaterin the fridge?	Glassware in freezer? Y / N	Prepackaged Coole(7 V) N	*Páce Analytical is not	responsible for missing samples from prepacked coolers	1 Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water A = Air	S = Soil SL = Sludge	SOL = Solid 0 = Other (please	(define)	l = Iced	H = HCL	M = Methanol	Conc N = Nitric Acid	: u - S = Sulfuric Acid	B = Sodium Bisúlfaté	X = Sodium Hydroxide	T = Sodium Thiosulfate	0 = Other (please define)	ion on the Chain of Custody. The te and is used to determine what 'laboratory's responsibility. Pace with missing information, but will	
5_07/13/2021 AMAI VSIS BEAUHECTED																			ease use the following codes to indica	the sample concentration within the	Hight, M - Medium; L - Low; C - Clean; Italianus; L - Low; C - Clean;		REAC AND AND A DO THE ACCOUNT	Other	Chromatogram	A Donsible for any omitted informati that must be complete and accura Any missing information is not the ach project and will try to assist not be held accountable	
Doc # 381 Rev Doc # 381 Rev East Longmeedow, MA 01028	Id Filtered	b to Filter Spirate Stample. Id Filtered	b to Filter	B ONLY		LASTIC BACTERIA ENCORE		×	×	×									Irements MA MCP Required	MCP Certification Form Required poss	CT RCP Required H - RCP Certification Form Required	MA State DW Pacutrod	Dalinbay Mr. appre your			Hisclaimer : Pace Analytical is not res hain of Custody is a legal document talyses the laboratory will perform. nalytical values your partnership on e	
CHAIN OF CUSTODY RECORD	10-Day 🗌 O Fie	ure vate: U Lai (equited Orthopio 3-Day O Fiel	4-Day Data Delivery			Marchix Conc Code VIALS GLASS P	S	5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									Special Regul				# CISMo	Aunicipality	1 Sct MB Krownfield MB		
http://www.l	rests 7-Day		AYD 2-Day 🗍	Other: NUT A	CLP Like Data Pkg Required: Email To: DMQSSCA	Fax To #: WIJ42D Beginning Ending Date/Time Date/Time COMP/GRAB	2/2/23 1230 gravo	4/23/1015 grav	212/23 830 gravo	4223 1100 grav						lient Comments:	MUP INTERNOOS	D FULL	- Verserion umit Requirements		(C)		Ottes	roject Entity Government	Federal City		
Phone: 413-525-2332 Fax: 413-525-6405	Access COC's and Support Regu	A. Sandwich , mp	Sand PI+ Road Trues	Massa	Demo hand	Client Sample ID / Description	p-2(2-4)	<u>p-5(0-2)</u>	P-(6(0-2)	(7-0)b-a						Date/Time:	Awter .	016 B3 53	SKO3 175	3 Martimet 715-	Date/Time:	Date/Time:		Vate/ I me:	Date/Time:		
Pace Analytical	r mpany Name;	dress: 90 Ravie W	opert Name Spect Location: Sand P(A spect Number: 77 17 CA	Jject Manager: DVVICN 20 Ouote Name/Number	oice Recipient: noted By: C. C. C. C. L. D. D. D.	Pace Work Order#		XC	<u>- ()</u>	<u>⊢</u> † ∑						nquished by: (signature)	eived by: (signatury)	nouisticatives	"he Chined	The Dy: (Signature) (20)	duished by: (signature)	eived by: (signature)	noutebad hus trianstant	rquistico oy. (signature)	eived by: (signature)	Continents:	Another and a full of the second strain and strain and second second second second second second second second

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405 www.pacelabs.com ENV-FRM-ELON-0001 v02__Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

Q° PEOPLE ADVANCING SCIENCE

Client	Horgley Wit	ten	Gro	UD						True /	False
Drojec	+ Sand Pit	RA	, tru	(n)		Receive	d on ice			四/	Ο.
MCP/F	CP Required MA	M	CP	· <u>·</u> ·	<u> </u>	Received	d in Cool	er		Ø	
Delive	rable Package Requirem	ent	RCS	- 1		Custody	Seal: D/		LAE	Π.	
Locatio	n Sand Pit	Ro	I, Tr	rvro .	MA	COCD	Jeal. Dr	11 6	<u>1416.</u>		
PWSID	# (When Applicable)	NYA	, , ,		-ténennalaa	CUL Kell	nquisne	2			
Arrival	Method COUVI	11	-			COC/San	nples Lat	els Agree			
Receive	ed By / Date / Time 9	Ì.	2161	23 1	15	All Samp	les in Go	od Condition		<u>Ľ</u>	
Back-St	neet By / Date / Time G	L.	2171	231	158	Samples	Receivec	l within Holdi	ng Time	<u>ц</u>	
Tempe	rature Method	ivn		# 5		<u>is there e</u>	nough V	olume		Ľ/	
Tempo	6°C Actual Tem	peratur	e	<u> </u>		Proper M	edia/Co	ntainer Used		P	
Rush Sa	mples: Yes / No		Notify			Splitting S	Samples	Required			E
Short H	old: Yes / No	<u>. </u>	Notify		`						Ā
							<u></u>	بر روز بالم من الم الم الم الم			नि
Note	es regarding Samples	/COC	outside	of SOP							
-					<u> </u>	<u>ab to Filt</u>	ers		<u>.</u>		
						COC Legib	le.	L			
					T (.OC Incit	10eg: (C	neck all Inclu	ded)	• ·	eg mente gan en e
						r					
					- 0	lient [nalysis	Sampler	Name	Ø
		•	<u></u>		— 0 — p	Client [Project [nalysis 🛛 Ds	SamplerCollection	Name on Date/Tir	0 ne 19
**************************************					c p	Client [Project [nalysis 🗳 Ds 🗳	Sampler Collectic	Name • on Date/Tir	
		tint				Client C Project C	I A II	nalysis Ds D	Sampler Collectio	Name on Date/Tir	
Contair	1er (Circle when applicable)	UnF	> HCI	HNO3	- C - P - A H2SO4	Client C project C NI Samp NaOH	les Proj	nalysis Ds Ds Per PH NaS2O3	Sampler Collection	Name on Date/Tir] ervative	
Contair 1L 500 mL	ner (Circle when applicable) Amber Plastic Amber Plastic	UnF	> HCI	HN03	- C - P - A H2SO4	Client C Project C	les Proj	nalysis Ds Ds Per PH NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Plastic	UnF	P HCI	HNO3	P A H2SO4	Client [Project [NI Samp NaOH	les Proj	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL Other	1er (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear_Plastic	UnF	> HCI	HNO3	P A H2SO4	Client C Project C All Samp NaOH	les Proj	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz	IET (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Plastic Amber Clear	UnF	P HCI	HNO3	C P A H2SO4	Client C Project C NI Samp NaOH	les Proj	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear	UnF 	> HCl	HNO3	P A H2SO4	Client C Project C NI Samp NaOH	les Prop	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz 4oz	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear	UnF 	> HCI	HNO3	C P A H2SO4	Client C Project C NI Samp NaOH	I A III	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz 4oz 2oz	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear	UnF 	P HCl	HNO3	C P A H2SO4	Ni Samp	les Proj	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz 4oz 2oz Col/Bac	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear	UnF 	> HCl	HNO3	A	Client C Project C All Samp NaOH	les Proj	nalysis Ds Ds NaS2O3	Sampler Collectio	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz 4oz 2oz Col/Bac Flashpo	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria	UnF Y	> HCI	HNO3	C P A H2SO4	Client C Project C NI Samp NaOH	A III	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 250 mL 0ther 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag	UnF 	P HCl	HNO3	P A H2SO4	NaOH	les Prop	nalysis D Ds D Per PH / /	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 250 mL 0 ther 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC Klt Parchio	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag	UnF 	> HCI	HNO3	P A H2SO4	Client C Project C All Samp NaOH	A III	nalysis Ds Ds NaS2O3	Sampler Collectio	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0ther 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC Klt Perchlo Encore	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag	UnF 	> HCI	HNO3	C P A H2SO4	Client C Project C NI Samp NaOH	A III	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 250 mL 0ther 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC Kit Perchlo Encore Frozen	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag	UnF 	> HCl	HNO3	P A H2SO4	Client C Project C NI Samp	A III	nalysis Ds Ds NaS2O3	Sampler Collection	Name on Date/Tir	
Contair 1L 500 mL 250 mL 0 ther 16 oz 8 oz 4 oz 2 oz Col/Bac Flashpo Plastic E SOC Klt Perchlo Encore Frozen	ner (Circle when applicable) Amber Plastic Amber Plastic Amber Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag rate	UnF 	> HCI	HNO3	P A H2SO4	Client C Project C NI Samp NaOH	A les Proj	nalysis Ds Per PH //	Sampler Collection	Name on Date/Tir	

February 28, 2023

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Sand Pit Rd, Truro, MA Client Job Number: Project Number: 22129 Laboratory Work Order Number: 23B0766

Enclosed are results of analyses for samples as received by the laboratory on February 6, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

and

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
23B0766-01	8
23B0766-02	11
23B0766-03	14
23B0766-05	22
23B0766-06	28
23B0766-07	33
23B0766-08	36
23B0766-09	39
Sample Preparation Information	42
QC Data	44
Volatile Organic Compounds by GC/MS	44
B330910	44
Semivolatile Organic Compounds by GC/MS	49
B330933	49
Polychlorinated Biphenyls By GC/ECD	53
B330896	53
Petroleum Hydrocarbons Analyses - EPH	54
B330895	54
Metals Analyses (Total)	57
B330929	57
B331047	58
Dual Column RPD Report	60

Table of Contents (continued)

Flag/Qualifier Summary	62
Certifications	63
Chain of Custody/Sample Receipt	70

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

REPORT DATE: 2/28/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 22129

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23B0766

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Sand Pit Rd, Truro, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TP-2 (2-4)	23B0766-01	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
TP-3 (0-2)	23B0766-02	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
TP-5 (0-2)	23B0766-03	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8260D	
				SW-846 8270E	
TP-6 (0-2)	23B0766-05	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8270E	
TP-8 (2-4)	23B0766-06	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260D	
TP-9 (0-2)	23B0766-07	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
TP-10 (6-8)	23B0766-08	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
TP-11 (0-2)	23B0766-09	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 6010D

Oualifications:

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

Antimony

23B0766-01[TP-2 (2-4)], B330929-MS1, B330929-MSD1

SW-846 7471B

Oualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

Mercury

B331047-BSD1

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

23B0766-03[TP-5 (0-2)], 23B0766-05[TP-6 (0-2)]

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

Chloroethane

B330910-BS1, B330910-BSD1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result Analyte & Samples(s) Qualified:

1,4-Dioxane

S083011-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromomethane B330910-BS1, B330910-BSD1, S083011-CCV1

Chloroethane

B330910-BS1, B330910-BSD1, S083011-CCV1

Dichlorodifluoromethane (Freon 12)

B330910-BS1, B330910-BSD1, S083011-CCV1

V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Carbon Disulfide

B330910-BS1, B330910-BSD1, S083011-CCV1

Dichlorodifluoromethane (Freon 12)

B330910-BS1, B330910-BSD1, S083011-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Aniline

23B0766-03[TP-5 (0-2)], 23B0766-05[TP-6 (0-2)], B330933-BLK1, B330933-BS1, B330933-BSD1, S083172-CCV1

Di-n-octylphthalate

23B0766-03[TP-5 (0-2)], 23B0766-05[TP-6 (0-2)], B330933-BLK1, B330933-BS1, B330933-BSD1, S083172-CCV1

Pentachlorophenol

23B0766-03[TP-5 (0-2)], 23B0766-05[TP-6 (0-2)], B330933-BLK1, B330933-BS1, B330933-BSD1, S083172-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Sample ID: 23B0766-01 Sample Matrix: Soil 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-2 (2-4)

Sampled: 2/2/2023 12:30

Sample Description:

Work Order: 23B0766

Petroleum Hydrocarbons Analyses - EPH Date Date/Time Analyte Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyst C9-C18 Aliphatics 11 MADEP EPH rev 2.1 ND mg/Kg dry 1 2/8/23 2/9/23 15:44 GJB C19-C36 Aliphatics ND 11 mg/Kg dry 1 MADEP EPH rev 2.1 2/8/23 2/9/23 15:44 GJB Unadjusted C11-C22 Aromatics ND MADEP EPH rev 2.1 2/8/23 11 mg/Kg dry 1 2/9/23 15:44 GJB C11-C22 Aromatics ND 11 MADEP EPH rev 2.1 2/8/23 2/9/23 15:44 GJB mg/Kg dry 1 MADEP EPH rev 2.1 Acenaphthene ND 0.11 2/8/23 2/9/23 15:44 GJB 1 mg/Kg dry Acenaphthylene MADEP EPH rev 2.1 2/8/23 ND 0.11 2/9/23 15:44 GJB mg/Kg dry 1 Anthracene 0.11 MADEP EPH rev 2.1 ND mg/Kg dry 1 2/8/23 2/9/23 15:44 GJB Benzo(a)anthracene MADEP EPH rev 2.1 ND 0.11 2/8/23 2/9/23 15:44 mg/Kg dry 1 GJB Benzo(a)pyrene ND 0.11 mg/Kg dry 1 MADEP EPH rev 2.1 2/8/23 2/9/23 15:44 GJB Benzo(b)fluoranthene MADEP EPH rev 2.1 ND 0.11 mg/Kg dry 1 2/8/23 2/9/23 15:44 GJB Benzo(g,h,i)perylene ND 0.11 mg/Kg dry 1 MADEP EPH rev 2.1 2/8/23 2/9/23 15:44 GJB Benzo(k)fluoranthene ND MADEP EPH rev 2.1 2/8/23 2/9/23 15:44 0.11 mg/Kg dry 1 GJB MADEP EPH rev 2.1 Chrysene ND 0.11 2/8/23 2/9/23 15:44 GJB mg/Kg dry 1 Dibenz(a,h)anthracene MADEP EPH rev 2.1 ND 0.11 1 2/8/23 2/9/23 15:44 GJB mg/Kg dry MADEP EPH rev 2.1 Fluoranthene ND 2/8/23 0.11 1 2/9/23 15:44 GJB mg/Kg dry Fluorene ND 0.11 1 MADEP EPH rev 2.1 2/8/23 GJB mg/Kg dry 2/9/23 15:44 Indeno(1,2,3-cd)pyrene MADEP EPH rev 2.1 2/8/23 ND 0.11 2/9/23 15:44 GJB mg/Kg dry 1 0.11 MADEP EPH rev 2.1 2-Methylnaphthalene ND 1 2/8/23 2/9/23 15:44 GJB mg/Kg dry MADEP EPH rev 2.1 Naphthalene ND 0.11 mg/Kg dry 1 2/8/23 2/9/23 15:44 GJB Phenanthrene MADEP EPH rev 2.1 ND 0.11 mg/Kg dry 1 2/8/23 2/9/23 15:44 GJB MADEP EPH rev 2.1 Pyrene ND 0.11 1 2/8/23 2/9/23 15:44 GJB mg/Kg dry % Recovery Surrogates **Recovery Limits** Flag/Qual Chlorooctadecane (COD) 48.2 40-140 2/9/23 15:44 63.5 40-140 o-Terphenyl (OTP) 2/9/23 15:44 40-140 2-Bromonaphthalene 107 2/9/23 15:44 2/9/23 15:44 2-Fluorobiphenyl 106 40-140

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-2 (2-4) Sample ID: 23B0766-01 Sample Matrix: Soil

Sampled: 2/2/2023 12:30

Sample Description:

Metals Analyses (Total)									
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.8	mg/Kg dry	1	MS-09	SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Arsenic	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Barium	8.2	1.8	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Beryllium	0.19	0.18	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Cadmium	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Chromium	6.5	0.72	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Lead	4.5	0.54	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Mercury	ND	0.028	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:33	AAJ
Nickel	3.5	0.72	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Selenium	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Silver	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 21:56	ATP
Thallium	ND	1.8	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Vanadium	6.9	0.72	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN
Zinc	47	0.72	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:40	HNN

89.4

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-2 (2-4) Sampled: 2/2/2023 12:30 Sample ID: 23B0766-01 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-3 (0-2) Sample ID: 23B0766-02

Sample Matrix: Soil

Sampled: 2/2/2023 12:50

Sample Description:

		Pet	troleum Hydrocarbo	ons Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Unadjusted C11-C22 Aromatics	16	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
C11-C22 Aromatics	13	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Acenaphthylene	0.18	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Benzo(a)anthracene	0.21	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Benzo(a)pyrene	0.23	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Benzo(b)fluoranthene	0.39	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Benzo(g,h,i)perylene	0.18	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Benzo(k)fluoranthene	0.14	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Chrysene	0.29	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Fluoranthene	0.46	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Indeno(1,2,3-cd)pyrene	0.20	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Phenanthrene	0.22	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Pyrene	0.46	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:03	GJB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		60.4	40-140					2/9/23 16:03	
o-Terphenyl (OTP)		75.1	40-140					2/9/23 16:03	
2-Bromonaphthalene		102	40-140					2/9/23 16:03	
2-Fluorobiphenyl		102	40-140					2/9/23 16:03	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-3 (0-2) Sample ID: 23B0766-02

Sample Matrix: Soil

Sampled: 2/2/2023 12:50

Sample Description:

Metals Analyses (Total)									
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Arsenic	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Barium	2.2	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Beryllium	ND	0.17	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Cadmium	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Chromium	1.4	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Lead	5.0	0.51	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Mercury	0.041	0.027	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:35	AAJ
Nickel	0.74	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Silver	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 22:04	ATP
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Vanadium	2.0	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN
Zinc	3.8	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 11:58	HNN

93.4

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-3 (0-2) Sampled: 2/2/2023 12:50 Sample ID: 23B0766-02 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03

Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

Volatile Organic Compounds by GC/MS Date Date/Time Units Dilution Flag/Qual Prepared Analyte Results RL Method Analyzed Analyst Acetone ND 0.11 SW-846 8260D 2/8/23 mg/Kg dry 1 2/8/23 6:37 MFF tert-Amyl Methyl Ether (TAME) ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Benzene ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry Bromobenzene ND 0.0022 SW-846 8260D 2/8/23 MFF 2/8/23 6:37 mg/Kg dry 1 Bromochloromethane ND 0.0022 SW-846 8260D 2/8/23 MFF mg/Kg dry 1 2/8/23 6:37 Bromodichloromethane 0.0022 ND SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1 Bromoform ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Bromomethane ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 2-Butanone (MEK) ND 0.044 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry n-Butylbenzene ND 0.0022 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry 1 MFF sec-Butylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF tert-Butylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF tert-Butyl Ethyl Ether (TBEE) ND 0.0011 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry 1 MFF Carbon Disulfide ND 0.011 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry Carbon Tetrachloride ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Chlorobenzene ND 0.0022 SW-846 8260D 2/8/23 1 mg/Kg dry 2/8/23 6:37 MFF Chlorodibromomethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Chloroethane ND 0.022 2/8/23 mg/Kg dry 1 SW-846 8260D 2/8/23 6:37 MFF Chloroform ND 0.0044 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Chloromethane ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 2-Chlorotoluene ND 0.0022 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry 1 MFF 4-Chlorotoluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1,2-Dibromoethane (EDB) ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Dibromomethane ND 2/8/23 0.0022 1 SW-846 8260D 2/8/23 6:37 MFF mg/Kg dry 1,2-Dichlorobenzene ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1.3-Dichlorobenzene ND 0.0022 1 SW-846 8260D 2/8/23 mg/Kg dry 2/8/23 6:37 MFF 1.4-Dichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Dichlorodifluoromethane (Freon 12) ND 0.022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1,1-Dichloroethane ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry MFF 1.2-Dichloroethane ND 0.0022 1 SW-846 8260D 2/8/23 mg/Kg dry 2/8/23 6:37 MFF 1,1-Dichloroethylene ND 0.0044 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry 1 MFF cis-1,2-Dichloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF trans-1,2-Dichloroethylene ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1,2-Dichloropropane ND 0.0022 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1 mg/Kg dry 1,3-Dichloropropane ND 0.0011 1 SW-846 8260D 2/8/23 2/8/23 6.37 MFF mg/Kg dry 2.2-Dichloropropane ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1,1-Dichloropropene ND 0.0022 1 SW-846 8260D 2/8/23 mg/Kg dry 2/8/23 6:37 MFF cis-1,3-Dichloropropene ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF trans-1,3-Dichloropropene ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Diethyl Ether ND 0.022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Diisopropyl Ether (DIPE) SW-846 8260D 2/8/23 ND 0.0011 mg/Kg dry 1 2/8/23 6:37 MFF 1,4-Dioxane ND 0.11 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry Ethylbenzene ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

Volatile Organic Compounds by GC/MS Date Date/Time Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyte Analyst Hexachlorobutadiene 0.0022 ND SW-846 8260D 2/8/23 mg/Kg dry 1 2/8/23 6:37 MFF 2-Hexanone (MBK) ND 0.022 SW-846 8260D 2/8/23 2/8/23 6.37 MFF mg/Kg dry 1 Isopropylbenzene (Cumene) ND 0.0022 SW-846 8260D 2/8/23 MFF mg/Kg dry 1 2/8/23 6:37 p-Isopropyltoluene (p-Cymene) 2/8/23 6:37 ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 MFF Methyl tert-Butyl Ether (MTBE) ND 0.0044 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Methylene Chloride ND 0.022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 4-Methyl-2-pentanone (MIBK) ND 0.022 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1 Naphthalene ND 0.0044 SW-846 8260D 2/8/23 mg/Kg dry 1 2/8/23 6:37 MFF n-Propylbenzene ND SW-846 8260D 2/8/23 0.0022 mg/Kg dry 1 2/8/23 6:37 MFF Styrene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1,1,1,2-Tetrachloroethane ND 0.0022 SW-846 8260D 2/8/23 2/8/23 6:37 1 MFF mg/Kg dry 1,1,2,2-Tetrachloroethane ND 0.0011 SW-846 8260D 2/8/23 1 2/8/23 6:37 MFF mg/Kg dry Tetrachloroethylene 0.0022 ND 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry Tetrahydrofuran ND 0.011 2/8/23 mg/Kg dry 1 SW-846 8260D 2/8/23 6:37 MFF Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1,2,3-Trichlorobenzene 0.0022 SW-846 8260D ND mg/Kg dry 1 2/8/23 2/8/23 6:37 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF 1,1,1-Trichloroethane ND 0.0022 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1,1,2-Trichloroethane ND 0.0022 SW-846 8260D 2/8/23 2/8/23 6:37 mg/Kg dry 1 MFF Trichloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF Trichlorofluoromethane (Freon 11) ND 0.011 SW-846 8260D 2/8/23 2/8/23 6:37 MFF mg/Kg dry 1 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6.37 MFF 0.0022 1,2,4-Trimethylbenzene ND 2/8/23 1 SW-846 8260D MFF mg/Kg dry 2/8/23 6:37 1,3,5-Trimethylbenzene ND 0.0022 SW-846 8260D 2/8/23 mg/Kg dry 1 2/8/23 6:37 MFF Vinyl Chloride ND 0.011 1 SW-846 8260D 2/8/23 mg/Kg dry 2/8/23 6:37 MFF m+p Xylene ND 0.0044 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF o-Xylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 6:37 MFF % Recovery **Recovery Limits** Surrogates Flag/Qual 1,2-Dichloroethane-d4 103 70-130 2/8/23 6:37 Toluene-d8 99.9 70-130 2/8/23 6:37 4-Bromofluorobenzene 100 70-130 2/8/23 6:37

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

			Semivolatile Organic C	ompounds by	GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Biphenyl	ND	0.073	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Acenaphthene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Acenaphthylene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Acetophenone	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Aniline	ND	0.37	mg/Kg dry	1	V-05	SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Anthracene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Benzo(a)anthracene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Benzo(a)pyrene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Benzo(b)fluoranthene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Benzo(g,h,i)perylene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Benzo(k)fluoranthene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Bis(2-chloroethoxy)methane	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Bis(2-chloroethyl)ether	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Bis(2-chloroisopropyl)ether	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Bis(2-Ethylhexyl)phthalate	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
4-Bromophenylphenylether	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Butylbenzylphthalate	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
4-Chloroaniline	ND	0.72	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2-Chloronaphthalene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2-Chlorophenol	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Chrysene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Dibenz(a,h)anthracene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Dibenzofuran	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Di-n-butylphthalate	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
1,2-Dichlorobenzene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
1,3-Dichlorobenzene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
1,4-Dichlorobenzene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
3,3-Dichlorobenzidine	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2,4-Dichlorophenol	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Diethylphthalate	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2,4-Dimethylphenol	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Dimethylphthalate	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2,4-Dinitrophenol	ND	0.72	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2,4-Dinitrotoluene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
2,6-Dinitrotoluene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Di-n-octylphthalate	ND	0.37	mg/Kg dry	1	V-05	SW-846 8270E	2/8/23	2/10/23 15:18	AR2
1,2-Diphenylhydrazine/Azobenzene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Fluoranthene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Fluorene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Hexachlorobenzene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Hexachlorobutadiene	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Hexachloroethane	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Indeno(1,2,3-cd)pyrene	ND	0.19	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2
Isophorone	ND	0.37	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:18	AR2

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

Work Order: 23B0766

Semivolatile Organic Compounds by GC/MS Date Date/Time Analyte Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyst 2-Methylnaphthalene ND 0.19 SW-846 8270E 2/10/23 15:18 1 2/8/23 mg/Kg dry AR2 2-Methylphenol ND 0.37 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 mg/Kg dry 3/4-Methylphenol ND 0.37 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 mg/Kg dry 1 Naphthalene ND SW-846 8270E 2/8/23 2/10/23 15:18 0.19 mg/Kg dry 1 AR2 Nitrobenzene ND 0.37 mg/Kg dry 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 2-Nitrophenol SW-846 8270E 2/8/23 2/10/23 15:18 ND 0.37 mg/Kg dry 1 AR2 4-Nitrophenol ND 0.72 mg/Kg dry 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 Pentachlorophenol ND 0.37 mg/Kg dry 1 V-05 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 Phenanthrene ND 0.19 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 mg/Kg dry 1 Phenol ND 2/8/23 0.37 mg/Kg dry 1 SW-846 8270E 2/10/23 15:18 AR2 Pyrene ND 0.19 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 mg/Kg dry 1 Pyridine ND 0.37 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 mg/Kg dry 1,2,4-Trichlorobenzene ND 0.37 mg/Kg dry 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 2,4,5-Trichlorophenol ND 0.37 1 SW-846 8270E 2/8/232/10/23 15:18 AR2 mg/Kg dry 2,4,6-Trichlorophenol ND 0.37 mg/Kg dry 1 SW-846 8270E 2/8/23 2/10/23 15:18 AR2 % Recovery **Recovery Limits** Flag/Qual Surrogates 2-Fluorophenol 79.7 30-130 2/10/23 15:18 Phenol-d6 83.4 30-130 2/10/23 15:18 Nitrobenzene-d5 75.2 30-130 2/10/23 15:18 2-Fluorobiphenyl 78.2 30-130 2/10/23 15:18 2,4,6-Tribromophenol 91.2 30-130 2/10/23 15:18 2/10/23 15:18 p-Terphenyl-d14 87.9 30-130

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Work Order: 23B0766

Date Received: 2/6/2023

Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03

Sampled: 2/2/2023 10:15

Sample Description:

Sample Matrix: Soil

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Р	olychlorinated Biph	enyls By GC	/ECD				
Analyta	Dosults	DI	Unite	Dilution	Elag/Qual	Mathad	Date Propagad	Date/Time	Analyst
Analyte	Results	KL	Units	Difution	Tiag/Quai	Methou	Trepareu	Analyzeu	Analyst
Aroclor-1016 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1221 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1232 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1242 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1248 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1254 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1260 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1262 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Aroclor-1268 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:19	SFM
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		91.9	30-150					2/9/23 17:19	
Decachlorobiphenyl [2]		90.0	30-150					2/9/23 17:19	
Tetrachloro-m-xylene [1]		84.3	30-150					2/9/23 17:19	
Tetrachloro-m-xylene [2]		86.5	30-150					2/9/23 17:19	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sample ID: 23B0766-03

Sample Matrix: Soil

Sampled: 2/2/2023 10:15

		Pe	troleum Hydrocarbo	ons Analyses	- EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Unadjusted C11-C22 Aromatics	15	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
C11-C22 Aromatics	15	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Benzo(g,h,i)perylene	0.14	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:22	GJB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		59.4	40-140					2/9/23 16:22	
o-Terphenyl (OTP)		79.6	40-140					2/9/23 16:22	
2-Bromonaphthalene		105	40-140					2/9/23 16:22	
2-Fluorobiphenyl		107	40-140					2/9/23 16:22	

Project Location: Sand Pit Rd, Truro, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Work Order: 23B0766

Date Received: 2/6/2023 Field Sample #: TP-5 (0-2)

Sample ID: 23B0766-03 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Metals Analyses (Total)											
Analyte	Results	RL	Units	Dilution	Flag/Oual	Method	Date Prepared	Date/Time Analyzed	Analyst		
Antimony	ND	1.8	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Arsenic	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Barium	7.2	1.8	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Beryllium	ND	0.18	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Cadmium	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Chromium	3.0	0.71	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Lead	8.3	0.53	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Mercury	ND	0.028	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:37	AAJ		
Nickel	1.9	0.71	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Selenium	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Silver	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 22:11	ATP		
Thallium	ND	1.8	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Vanadium	4.0	0.71	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		
Zinc	14	0.71	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:12	HNN		

91.3

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-5 (0-2) Sampled: 2/2/2023 10:15 Sample ID: 23B0766-03 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sample ID: 23B0766-05 Sample Matrix: Soil

Isophorone

ND

0.36

mg/Kg dry

1

SW-846 8270E

2/8/23 2/10/23 15:42 AR2

Sampled: 2/2/2023 08:30

Sample Description:

			Semivolatile Organic C	ompounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Biphenyl	ND	0.071	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Aniline	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
4-Chloroaniline	ND	0.70	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4-Dinitrophenol	ND	0.70	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270E	2/8/23	2/10/23 15:42	AR2
1,2-Diphenylhydrazine/Azobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Hexachlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Hexachlorobutadiene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2

Work Order: 23B0766

Semivolatile Organic Compounds by GC/MS

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sample ID: 23B0766-05 Sample Matrix: Soil

Sampled: 2/2/2023 08:30

Angleta	Doculto	DI	Unite	Dilution	Elag/Oual	Mathad	Date	Date/Time	Analyst
Analyte	Kesuits	KL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
4-Nitrophenol	ND	0.70	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Pentachlorophenol	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Pyridine	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270E	2/8/23	2/10/23 15:42	AR2
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		74.5	30-130					2/10/23 15:42	
Phenol-d6		76.5	30-130					2/10/23 15:42	
Nitrobenzene-d5		73.9	30-130					2/10/23 15:42	
2-Fluorobiphenyl		71.9	30-130					2/10/23 15:42	
2,4,6-Tribromophenol		83.9	30-130					2/10/23 15:42	
p-Terphenyl-d14		79.5	30-130					2/10/23 15:42	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023

Field Sample #: TP-6 (0-2)

S

Sample ID: 23B0766-05 Sample Matrix: Soil

Sample Flags: O-32

Sampled: 2/2/2023 08:30

Sample Description:

Polychlorinated Biphenyls By GC/ECD

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1221 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1232 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1242 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1248 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1254 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1260 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1262 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Aroclor-1268 [1]	ND	0.085	mg/Kg dry	4		SW-846 8082A	2/8/23	2/9/23 17:37	SFM
Surrogates		% Recovery	Recovery Limits	5	Flag/Qual				
Decachlorobiphenyl [1]		102	30-150					2/9/23 17:37	
Decachlorobiphenyl [2]		100	30-150					2/9/23 17:37	
Tetrachloro-m-xylene [1]		90.7	30-150					2/9/23 17:37	
Tetrachloro-m-xylene [2]		93.6	30-150					2/9/23 17:37	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sample ID: 23B0766-05

Sample Matrix: Soil

Sampled: 2/2/2023 08:30

		Pe	troleum Hydrocarbo	ons Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 16:41	GJB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		62.3	40-140					2/9/23 16:41	
o-Terphenyl (OTP)		72.7	40-140					2/9/23 16:41	
2-Bromonaphthalene		93.6	40-140					2/9/23 16:41	
2-Fluorobiphenyl		92.4	40-140					2/9/23 16:41	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sample ID: 23B0766-05

Sample Matrix: Soil

Sampled: 2/2/2023 08:30

Metals Analyses (Total)											
							Date	Date/Time			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst		
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Arsenic	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Barium	6.2	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Beryllium	0.17	0.17	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Cadmium	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Chromium	5.4	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Lead	3.4	0.51	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:39	AAJ		
Nickel	3.0	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Silver	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 22:19	ATP		
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Vanadium	6.7	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		
Zinc	8.9	0.68	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:17	HNN		

94.2

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-6 (0-2) Sampled: 2/2/2023 08:30 Sample ID: 23B0766-05 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-8 (2-4) Sample ID: 23B0766-06

Sample Matrix: Soil

Sampled: 2/2/2023 10:25

			Volatile Organic Con	npounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	0.11	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Benzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Bromobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Bromochloromethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Bromodichloromethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Bromoform	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Bromomethane	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
2-Butanone (MEK)	ND	0.043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
n-Butylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
sec-Butylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
tert-Butylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Carbon Disulfide	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Carbon Tetrachloride	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Chlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Chlorodibromomethane	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Chloroethane	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Chloroform	ND	0.0043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Chloromethane	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
2-Chlorotoluene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
4-Chlorotoluene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2-Dibromoethane (EDB)	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Dibromomethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2-Dichlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,3-Dichlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,4-Dichlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1-Dichloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2-Dichloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1-Dichloroethylene	ND	0.0043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
cis-1,2-Dichloroethylene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
trans-1,2-Dichloroethylene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2-Dichloropropane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,3-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
2,2-Dichloropropane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1-Dichloropropene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
cis-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
trans-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Diethyl Ether	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Diisopropyl Ether (DIPE)	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,4-Dioxane	ND	0.11	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Ethylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF

Work Order: 23B0766

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-8 (2-4) Sample ID: 23B0766-06 Sample Matrix: Soil

Sampled: 2/2/2023 10:25

AndyeResultRelUnitPlanePlaneMethodPreprintPlane <t< th=""><th></th><th></th><th>Vo</th><th>latile Organic Con</th><th>npounds by G</th><th>C/MS</th><th></th><th></th><th></th><th></th></t<>			Vo	latile Organic Con	npounds by G	C/MS				
Hexachlorobutadiene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 2-Hexanone (MBK) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 2/8/23 2/8/23 7/02 MFF Isopropyllohzene (Curnene) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF P-isopropyllohzene (O-Cymene) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Methylene-Choride ND 0.022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF A-Methyl-2-pentanone (MIBK) ND 0.022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Styrene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Styrene ND 0.0022 mg/Kg dry 1 <th>Analyte</th> <th>Results</th> <th>RL</th> <th>Units</th> <th>Dilution</th> <th>Flag/Qual</th> <th>Method</th> <th>Date Prepared</th> <th>Date/Time Analyzed</th> <th>Analyst</th>	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Hexanoe (MBK) ND 0.022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Isopopylbenzene (Cumene) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF p-lsopopylbenzene (Cumene) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Methylet:Dhord ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF 4.Methyl-2-pentanone (MIBK) ND 0.022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Nphthalene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/33 2.8/23 7.02 MFF 1,1,1.2-Tetrakeloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/33 2.8/23 7.02 MFF 1,1,2.2-Tetrakeloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D <td>Hexachlorobutadiene</td> <td>ND</td> <td>0.0022</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260D</td> <td>2/8/23</td> <td>2/8/23 7:02</td> <td>MFF</td>	Hexachlorobutadiene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Isopropylbenzene (Cumene) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 7.02 MFF p-Isopropylboluce (p-Cymene) ND 0.0043 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Methyl terl-Butyl Ether (MTBF) ND 0.0043 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Methylene Chloride ND 0.022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Authyl-2-pentanone (MIBK) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Authyl-2-pentanone (MIBK) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 2.8/23 7.02 MFF Nphthaltene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 7.02 MFF 1,1,2-7Ertachloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2.8/23 7.02 MFF 1,1,2-7Ertachloroethane ND 0.0022	2-Hexanone (MBK)	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
p-Isopropyloluce (p-Cymene) ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Methyl tert-Butyl Ether (MTBE) ND 0.0043 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Methyl tert-Butyl Ether (MTBE) ND 0.022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 4-Methyl-2-pentanone (MIBK) ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 7/02 MFF Apathalene ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Styrene ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,1,2-2-Tetrachoroethylene ND 0.0011 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,1,2-Tetrachoroethylene ND 0.0022 mg/kg dry 1 SW-846 8260D	Isopropylbenzene (Cumene)	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Methyl terl-Butyl Ether (MTBE) ND 0.0043 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF Methyl-ene Chloride ND 0.022 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF 4-Methyl-2-pentanone (MIBK) ND 0.002 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF Naphtalene ND 0.002 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF Naphtalene ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF 1,1,1-2-Tertachloroethane ND 0.002 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF 1,1,2-2-Tertachloroethane ND 0.0011 mg/kg dry 1 SW-846 8260D 2/8/3 2/8/3 7/02 MFF 1,1,2-Tricthorobenzene ND 0.0022 mg/kg dry 1 SW-846 8260D <td< td=""><td>p-Isopropyltoluene (p-Cymene)</td><td>ND</td><td>0.0022</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260D</td><td>2/8/23</td><td>2/8/23 7:02</td><td>MFF</td></td<>	p-Isopropyltoluene (p-Cymene)	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Methylene Chloride ND 0.022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 4-Methyl-2-pentanone (MIBK) ND 0.0021 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Naphthalene ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF Styrene ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,1,2-Tetrachloroethane ND 0.0022 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,1,2-Tetrachloroethane ND 0.0011 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,1,2-Tetrachloroethylene ND 0.0011 mg/kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MFF 1,2,4-Trichloroethane ND 0.0022 mg/kg dry 1 SW-846 8260D	Methyl tert-Butyl Ether (MTBE)	ND	0.0043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
4-Methyl-2-pentanone (MIBK) ND 0.022 ng/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Naphthalene ND 0.0043 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF n-Propylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Styrene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Tetrachloroethane ND 0.002 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Trichoforoethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,3,5-Trichloroethane ND	Methylene Chloride	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Naphthalene ND 0.0043 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF n-Propylbenzene ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Styrene ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,1,2-Tetrachloroethane ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,1,2-Tetrachloroethane ND 0.0011 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Tetrachloroethylene ND 0.0011 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Tetrachloroethylene ND 0.011 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8	4-Methyl-2-pentanone (MIBK)	ND	0.022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
n-Propylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Styrene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,1,1,2-Tetrachloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,1,2,2-Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF Tetrachloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7/20 MFF 1,1,2-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D <t< td=""><td>Naphthalene</td><td>ND</td><td>0.0043</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260D</td><td>2/8/23</td><td>2/8/23 7:02</td><td>MFF</td></t<>	Naphthalene	ND	0.0043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Syrene ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF 1,1,1,2-Tetrachloroethane ND 0.0021 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF 1,1,2,2-Tetrachloroethane ND 0.0011 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF Tetrachloroethane ND 0.0022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF Tetrachloroethylene ND 0.011 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF 1/2,3-Trichlorobenzene ND 0.022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF 1,1,1-Trichlorobenzene ND 0.022 mg/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7/02 MF 1,1,2-Trichlorobenzene ND 0.0022 mg/K g dry 1 SW-846 8260D	n-Propylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1,2-Tetrachloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2,2-Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Tetrachloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Tetrachloroethylene ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,1-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trinchylbenzene <t< td=""><td>Styrene</td><td>ND</td><td>0.0022</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260D</td><td>2/8/23</td><td>2/8/23 7:02</td><td>MFF</td></t<>	Styrene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1,2,2-Tetrachloroethane ND 0.0011 mg/Kg dry 1 SW-846 8260D 2/8/23 7.02 MFF Tetrachloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Tetrachloroethylene ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,1-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trichloroethane ND 0.0	1,1,1,2-Tetrachloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Tetrachloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Tetrahydrofuran ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,1-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Trichlorobenhane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichloropropane ND<	1,1,2,2-Tetrachloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Tetrahydrofuran ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,1,1-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,1,2-Trichlorobethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichlorobethane (Freon 11) ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene	Tetrachloroethylene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Toluene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,4-Trichlorobenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,1,2-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF Trichloroethane (Freon 11) ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7.02 MFF 1,3,5-Trimethylbenzene	Tetrahydrofuran	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2,3-TrichlorobenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,2,4-TrichlorobenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,1,1-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,1,2-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFFTrichloroethyleneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,2,3-TrichloropropaneND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,2,4-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,3,5-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,3,5-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF1,3,5-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFFVinyl ChlorideND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFFm+p XyleneND0.0043mg/Kg dry1SW-846 8260D2/8/232/8/237.02MFF	Toluene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2,4-TrichlorobenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,1,1-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,1,2-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFTrichloroethyleneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFTrichlorofluoromethane (Freon 11)ND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,2,3-TrichloropropaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,2,4-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,3,5-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFVinyl ChlorideND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFm+p XyleneND0.0043mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF	1,2,3-Trichlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1,1-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,1,2-TrichloroethaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFTrichloroethyleneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFTrichlorofluoromethane (Freon 11)ND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,2,3-TrichloropropaneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,2,4-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF1,3,5-TrimethylbenzeneND0.0022mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFVinyl ChlorideND0.011mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFFm+p XyleneND0.0043mg/Kg dry1SW-846 8260D2/8/232/8/237:02MFF	1,2,4-Trichlorobenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,1,2-Trichloroethane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Trichloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Trichlorofluoromethane (Freon 11) ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,4-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene	1,1,1-Trichloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Trichloroethylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Trichlorofluoromethane (Freon 11) ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,4-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	1,1,2-Trichloroethane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Trichlorofluoromethane (Freon 11) ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,4-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.0043 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	Trichloroethylene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,2,3-Trichloropropane ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,2,4-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.0043 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	Trichlorofluoromethane (Freon 11)	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF 1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.0043 me/K g dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	1,2,3-Trichloropropane	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
1,3,5-Trimethylbenzene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.0043 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	1,2,4-Trimethylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Vinyl Chloride ND 0.011 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF m+p Xylene ND 0.0043 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	1,3,5-Trimethylbenzene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
m+p Xvlene ND 0.0043 mº/K@dry 1 SW-846.8260D 2/8/23 2/8/23 7/02 MEF	Vinyl Chloride	ND	0.011	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
	m+p Xylene	ND	0.0043	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
0-Xylene ND 0.0022 mg/Kg dry 1 SW-846 8260D 2/8/23 2/8/23 7:02 MFF	o-Xylene	ND	0.0022	mg/Kg dry	1		SW-846 8260D	2/8/23	2/8/23 7:02	MFF
Surrogates % Recovery Limits Flag/Qual	Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
1,2-Dichloroethane-d4 102 70-130 2/8/23 7:02	1,2-Dichloroethane-d4		102	70-130					2/8/23 7:02	
Toluene-d8 97.0 70-130 2/8/23 7:02 4 Premefluerehenzene 100 70.130 2/9/22 7:02	Toluene-d8		97.0 100	70-130					2/8/23 7:02	

Work Order: 23B0766

Date/Time

Date

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-8 (2-4) Sample ID: 23B0766-06 Sample Matrix: Soil

Sampled: 2/2/2023 10:25

Sample Description:

Petroleum Hydrocarbons Analyses - EPH e Results RL Units Dilution Flag

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
C19-C36 Aliphatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Unadjusted C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Acenaphthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Acenaphthylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Benzo(a)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Benzo(a)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Benzo(b)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Benzo(g,h,i)perylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Benzo(k)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Chrysene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Dibenz(a,h)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Fluorene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Indeno(1,2,3-cd)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
2-Methylnaphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Naphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Phenanthrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:29	GJB
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
Chlorooctadecane (COD)		56.8	40-140					2/9/23 13:29	
o-Terphenyl (OTP)		74.3	40-140					2/9/23 13:29	
2-Bromonaphthalene		103	40-140					2/9/23 13:29	
2-Fluorobiphenyl		99.4	40-140					2/9/23 13:29	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-8 (2-4) Sample ID: 23B0766-06

Sample Matrix: Soil

Sampled: 2/2/2023 10:25

Metals Analyses (Total)									
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	2.0	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Arsenic	ND	4.0	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Barium	9.6	2.0	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Beryllium	0.27	0.20	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Cadmium	ND	0.40	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Chromium	6.0	0.80	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Lead	3.0	0.60	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Mercury	ND	0.031	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:41	AAJ
Nickel	4.0	0.80	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Selenium	ND	4.0	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Silver	ND	0.40	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 22:27	ATP
Thallium	ND	2.0	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Vanadium	7.4	0.80	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN
Zinc	11	0.80	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:23	HNN

81.2

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-8 (2-4) Sampled: 2/2/2023 10:25 Sample ID: 23B0766-06 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-9 (0-2) Sample ID: 23B0766-07 Sample Matrix: Soil

Sampled: 2/2/2023 11:00

Petroleum Hydrocarbons Analyses - EPH									
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Acenaphthylene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Chrysene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Indeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:46	GJB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		65.7	40-140					2/9/23 14:46	
o-Terphenyl (OTP)		73.9	40-140					2/9/23 14:46	
2-Bromonaphthalene		91.6	40-140					2/9/23 14:46	
2-Fluorobiphenyl		90.1	40-140					2/9/23 14:46	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023

Field Sample #: TP-9 (0-2) Sample ID: 23B0766-07

Sample Matrix: Soil

Sampled: 2/2/2023 11:00

Metals Analyses (Total)									
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Arsenic	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Barium	2.3	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Beryllium	ND	0.17	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Cadmium	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Chromium	1.7	0.69	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Lead	1.2	0.51	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	2/9/23	2/9/23 14:51	AAJ
Nickel	1.8	0.69	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Silver	ND	0.34	mg/Kg dry	1		SW-846 6010D	2/8/23	2/14/23 22:35	ATP
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Vanadium	2.6	0.69	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN
Zinc	5.8	0.69	mg/Kg dry	1		SW-846 6010D	2/8/23	2/10/23 12:28	HNN

97.2

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-9 (0-2) Sampled: 2/2/2023 11:00 Sample ID: 23B0766-07 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-10 (6-8) Sample ID: 23B0766-08 Sample Matrix: Soil

Sampled: 2/2/2023 11:40

Petroleum Hydrocarbons Analyses - EPH									
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 13:48	GJB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		62.3	40-140					2/9/23 13:48	
o-Terphenyl (OTP)		83.2	40-140					2/9/23 13:48	
2-Bromonaphthalene		107	40-140					2/9/23 13:48	
2-Fluorobiphenyl		106	40-140					2/9/23 13:48	

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-10 (6-8)

Sample ID: 23B0766-08

Sample Matrix: Soil

Sampled: 2/2/2023 11:40

Sample Description:

Metals Analyses (Total) Date Date/Time Analyte Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyst 1.7 Antimony ND mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN Arsenic ND 3.4 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN Barium SW-846 6010D 2/8/23 2/10/23 12:34 HNN 3.6 1.7 mg/Kg dry 1 Beryllium ND 0.17 SW-846 6010D 2/8/23 2/10/23 12:34 HNN mg/Kg dry 1 Cadmium ND 0.34 SW-846 6010D 2/8/23 2/10/23 12:34 HNN 1 mg/Kg dry Chromium SW-846 6010D 1.7 2/8/23 2/10/23 12:34 HNN 0.67 mg/Kg dry 1 Lead 1.4 0.51 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN Mercury SW-846 7471B ND 0.027 1 2/9/23 2/9/23 14:52 mg/Kg dry AAJ Nickel 2.4 0.67 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN Selenium ND 3.4 mg/Kg dry 1 SW-846 6010D 2/8/232/10/23 12:34 HNN Silver ND 0.34 mg/Kg dry 1 SW-846 6010D 2/8/23 2/14/23 22:42 ATP Thallium ND 1.7 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN mg/Kg dry Vanadium SW-846 6010D 2/8/23 2.5 0.67 mg/Kg dry 1 2/10/23 12:34 HNN Zinc 6.6 0.67 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:34 HNN

95.1

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-10 (6-8) Sampled: 2/2/2023 11:40 Sample ID: 23B0766-08 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Work Order: 23B0766

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-11 (0-2) Sample ID: 23B0766-09 Sample Matrix: Soil

Sampled: 2/2/2023 14:00

Petroleum Hydrocarbons Analyses - EPH									
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Acenaphthylene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Chrysene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Indeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Pyrene	ND	0.10	mg/Kg dry	1		MADEP EPH rev 2.1	2/8/23	2/9/23 14:07	GJB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		60.7	40-140					2/9/23 14:07	
o-Terphenyl (OTP)		72.4	40-140					2/9/23 14:07	
2-Bromonaphthalene		93.6	40-140					2/9/23 14:07	
2-Fluorobiphenyl		92.8	40-140					2/9/23 14:07	

Project Location: Sand Pit Rd, Truro, MA Date Received: 2/6/2023 Field Sample #: TP-11 (0-2)

Sampled: 2/2/2023 14:00

Sample Description:

Work Order: 23B0766

Sample ID: 23B0766-09 Sample Matrix: Soil

Metals Analyses (Total) Date Date/Time Analyte Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyst Antimony ND 1.6 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN Arsenic ND 3.2 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN Barium 2.1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN 1.6 mg/Kg dry 1 Beryllium ND 0.16 SW-846 6010D 2/8/23 2/10/23 12:39 HNN mg/Kg dry 1 Cadmium ND 0.32 SW-846 6010D 2/8/23 2/10/23 12:39 HNN 1 mg/Kg dry Chromium SW-846 6010D 3.1 2/8/23 2/10/23 12:39 HNN 0.64 mg/Kg dry 1 Lead 1.6 0.48 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN Mercury ND 0.026 1 SW-846 7471B 2/9/23 2/9/23 14:54 mg/Kg dry AAJ Nickel 3.1 0.64 mg/Kg dry 1 SW-846 6010D 2/8/232/10/23 12:39 HNN Selenium ND 3.2 mg/Kg dry 1 SW-846 6010D 2/8/232/10/23 12:39 HNN Silver ND 0.32 mg/Kg dry 1 SW-846 6010D 2/8/23 2/14/23 23:06 ATP Thallium ND 1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN 1.6 mg/Kg dry Vanadium SW-846 6010D 2/8/23 3.7 0.64 mg/Kg dry 1 2/10/23 12:39 HNN Zinc 6.8 0.64 mg/Kg dry 1 SW-846 6010D 2/8/23 2/10/23 12:39 HNN

97.8

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd, Truro, MA Sample Description: Work Order: 23B0766 Date Received: 2/6/2023 Field Sample #: TP-11 (0-2) Sampled: 2/2/2023 14:00 Sample ID: 23B0766-09 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

SM 2540G

2/8/23

2/8/23 12:49

WDC

% Wt

Sample Extraction Data

Prep Method: SW-846 3546 Analytical Method: MADEP EPH rev 2.1

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-01 [TP-2 (2-4)]	B330895	20.0	2.00	02/08/23
23B0766-02 [TP-3 (0-2)]	B330895	20.0	2.00	02/08/23
23B0766-03 [TP-5 (0-2)]	B330895	20.0	2.00	02/08/23
23B0766-05 [TP-6 (0-2)]	B330895	20.0	2.00	02/08/23
23B0766-06 [TP-8 (2-4)]	B330895	20.0	2.00	02/08/23
23B0766-07 [TP-9 (0-2)]	B330895	20.0	2.00	02/08/23
23B0766-08 [TP-10 (6-8)]	B330895	20.0	2.00	02/08/23
23B0766-09 [TP-11 (0-2)]	B330895	20.0	2.00	02/08/23

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
23B0766-01 [TP-2 (2-4)]	B330944	02/08/23
23B0766-02 [TP-3 (0-2)]	B330944	02/08/23
23B0766-03 [TP-5 (0-2)]	B330944	02/08/23
23B0766-05 [TP-6 (0-2)]	B330944	02/08/23
23B0766-06 [TP-8 (2-4)]	B330944	02/08/23
23B0766-07 [TP-9 (0-2)]	B330944	02/08/23
23B0766-08 [TP-10 (6-8)]	B330944	02/08/23
23B0766-09 [TP-11 (0-2)]	B330944	02/08/23

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-01 [TP-2 (2-4)]	B330929	1.55	50.0	02/08/23
23B0766-02 [TP-3 (0-2)]	B330929	1.58	50.0	02/08/23
23B0766-03 [TP-5 (0-2)]	B330929	1.54	50.0	02/08/23
23B0766-05 [TP-6 (0-2)]	B330929	1.56	50.0	02/08/23
23B0766-06 [TP-8 (2-4)]	B330929	1.54	50.0	02/08/23
23B0766-07 [TP-9 (0-2)]	B330929	1.50	50.0	02/08/23
23B0766-08 [TP-10 (6-8)]	B330929	1.56	50.0	02/08/23
23B0766-09 [TP-11 (0-2)]	B330929	1.59	50.0	02/08/23

Prep Method: SW-846 7470A/7471A Analytical Method: SW-846 7471B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-01 [TP-2 (2-4)]	B331047	0.599	50.0	02/09/23
23B0766-02 [TP-3 (0-2)]	B331047	0.585	50.0	02/09/23
23B0766-03 [TP-5 (0-2)]	B331047	0.592	50.0	02/09/23
23B0766-05 [TP-6 (0-2)]	B331047	0.605	50.0	02/09/23
23B0766-06 [TP-8 (2-4)]	B331047	0.589	50.0	02/09/23
23B0766-07 [TP-9 (0-2)]	B331047	0.602	50.0	02/09/23
23B0766-08 [TP-10 (6-8)]	B331047	0.587	50.0	02/09/23
23B0766-09 [TP-11 (0-2)]	B331047	0.599	50.0	02/09/23

Prep Method: SW-846 3546 Analytical Method: SW-846 8082A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-03 [TP-5 (0-2)]	B330896	10.0	10.0	02/08/23
23B0766-05 [TP-6 (0-2)]	B330896	10.0	10.0	02/08/23

Sample Extraction Data

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-03 [TP-5 (0-2)]	B330910	4.95	10.0	02/08/23
23B0/66-06 [1P-8 (2-4)]	B330910	5.66	10.0	02/08/23

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
23B0766-03 [TP-5 (0-2)]	B330933	30.0	1.00	02/08/23
23B0766-05 [TP-6 (0-2)]	B330933	30.0	1.00	02/08/23

		D		a .:	_		0/850		DES	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%RFC	%REC Limits	RPD	RPD Limit	Notes
	Result	Linut	Jino	20101	result	, siele	Linito	<i>MD</i>	Linut	1.0005
Daten B330910 - SW-846 5035										
Blank (B330910-BLK1)				Prepared &	Analyzed: 02	/08/23				
Acetone	ND	0.10	mg/Kg wet							
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.0020	mg/Kg wet							
Bromomethane	ND	0.010	mg/Kg wet							
2-Butanone (MEK)	ND	0.040	mg/Kg wet							
n-Butylbenzene	ND	0.0020	mg/Kg wet							
sec-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.010	mg/Kg wet							
Carbon letrachloride	ND	0.0020	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chloroothane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.020	mg/Kg wet							
Chloromethana	ND	0.0040	mg/Kg wet							
2 Chlorotoluono	ND	0.010	mg/Kg wet							
4 Chlorotoluono	ND	0.0020	mg/Kg wet							
1.2 Dibromo 2 obloropropaga (DPCP)	ND	0.0020	mg/Kg wet							
1.2 Dibromosthana (EDP)	ND	0.0020	mg/Kg wet							
Dibromomethane	ND	0.0010	mg/Kg wet							
1.2 Dichlorobenzene	ND	0.0020	mg/Kg wet							
1 3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
1 4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.020	mg/Kg wet							
1 1-Dichloroethane	ND	0.0020	mg/Kg wet							
1,2-Dichloroethane	ND	0.0020	mg/Kg wet							
1,1-Dichloroethylene	ND	0.0040	mg/Kg wet							
cis-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
trans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
1,2-Dichloropropane	ND	0.0020	mg/Kg wet							
1,3-Dichloropropane	ND	0.0010	mg/Kg wet							
2,2-Dichloropropane	ND	0.0020	mg/Kg wet							
1,1-Dichloropropene	ND	0.0020	mg/Kg wet							
cis-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
trans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
Diethyl Ether	ND	0.020	mg/Kg wet							
Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
1,4-Dioxane	ND	0.10	mg/Kg wet							
Ethylbenzene	ND	0.0020	mg/Kg wet							
Hexachlorobutadiene	ND	0.0020	mg/Kg wet							
2-Hexanone (MBK)	ND	0.020	mg/Kg wet							
Isopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
p-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
Methylene Chloride	ND	0.020	mg/Kg wet							
4-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
Naphthalene	ND	0.0040	mg/Kg wet							

		Reporting		Snike	Source		%REC		RBL	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330910 - SW-846 5035										
				Prepared & A	Analyzed: 02	/08/23				
n-Propylbenzene	ND	0.0020	mg/Kg wet	p						
Styrene	ND	0.0020	mg/Kg wet							
1.1.1.2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
Tetrachloroethylene	ND	0.0020	mg/Kg wet							
Tetrahydrofuran	ND	0.010	mg/Kg wet							
Toluene	ND	0.0020	mg/Kg wet							
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet							
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet							
Trichloroethylene	ND	0.0020	mg/Kg wet							
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet							
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet							
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet							
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet							
Vinyl Chloride	ND	0.010	mg/Kg wet							
m+p Xylene	ND	0.0040	mg/Kg wet							
o-Xylene	ND	0.0020	mg/Kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0501		mg/Kg wet	0.0500		100	70-130			
Surrogate: Toluene-d8	0.0500		mg/Kg wet	0.0500		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.0492		mg/Kg wet	0.0500		98.5	70-130			
LCS (B330910-BS1)				Prepared & A	Analyzed: 02	/08/23				
Acetone	0.198	0.10	mg/Kg wet	0.200		99.1	40-160			
tert-Amyl Methyl Ether (TAME)	0.0202	0.0010	mg/Kg wet	0.0200		101	70-130			
Benzene	0.0195	0.0020	mg/Kg wet	0.0200		97.4	70-130			
Bromobenzene	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130			
Bromochloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130			
Bromodichloromethane	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130			
Bromoform	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130			
Bromomethane	0.0258	0.010	mg/Kg wet	0.0200		129	40-160			V-20
2-Butanone (MEK)	0.226	0.040	mg/Kg wet	0.200		113	40-160			
n-Butylbenzene	0.0189	0.0020	mg/Kg wet	0.0200		94.5	70-130			
sec-Butylbenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.6	70-130			
tert-Butylbenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.0	70-130			
tert-Butyl Ethyl Ether (TBEE)	0.0199	0.0010	mg/Kg wet	0.0200		99.6	70-130			
Carbon Disulfide	0.209	0.010	mg/Kg wet	0.200		105	70-130			V-36
Carbon Tetrachloride	0.0189	0.0020	mg/Kg wet	0.0200		94.5	70-130			
Chlorobenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130			
Chlorodibromomethane	0.0194	0.0010	mg/Kg wet	0.0200		96.9	70-130			
Chloroethane	0.0263	0.020	mg/Kg wet	0.0200		132 *	70-130			L-02, V-20
Chloromothano	0.0196	0.0040	mg/Kg wet	0.0200		98.1	70-130			
2 Chlorotoluono	0.0197	0.010	mg/Kg wet	0.0200		98.7	40-160			
2-Chlorotoluona	0.0199	0.0020	mg/Kg wet	0.0200		99.5	/0-130			
4-Chiorololuene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130			
1.2 Dibromoethane (EDP)	0.0171	0.0020	mg/Kg wet	0.0200		85.5	70-130			
Dibromomethane	0.0200	0.0010	mg/Kg wet	0.0200		100	70-130			
1.2-Dichlorobenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
1 3-Dichlorobenzene	0.0198	0.0020	mg/Kg wet	0.0200		97.4 05.6	70-130			
1 4-Dichlorobenzene	0.0191	0.0020	mg/K g wet	0.0200		95.0 96.1	70-130			
i, i Dielitototelizene	0.0192	0.0020	mg/ng wet	0.0200		90.1	70-150			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B330910 - SW-846 5035										
LCS (B330910-BS1)				Prepared & A	Analyzed: 02	/08/23				
Dichlorodifluoromethane (Freon 12)	0.0247	0.020	mg/Kg wet	0.0200		123	40-160			V-20, V-36
1,1-Dichloroethane	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130			,
1,2-Dichloroethane	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130			
1,1-Dichloroethylene	0.0203	0.0040	mg/Kg wet	0.0200		102	70-130			
cis-1,2-Dichloroethylene	0.0197	0.0020	mg/Kg wet	0.0200		98.6	70-130			
trans-1,2-Dichloroethylene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130			
1,2-Dichloropropane	0.0196	0.0020	mg/Kg wet	0.0200		97.9	70-130			
1,3-Dichloropropane	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130			
2,2-Dichloropropane	0.0189	0.0020	mg/Kg wet	0.0200		94.3	70-130			
1,1-Dichloropropene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130			
cis-1,3-Dichloropropene	0.0187	0.0010	mg/Kg wet	0.0200		93.5	70-130			
trans-1,3-Dichloropropene	0.0190	0.0010	mg/Kg wet	0.0200		95.1	70-130			
Diethyl Ether	0.0204	0.020	mg/Kg wet	0.0200		102	70-130			
Diisopropyl Ether (DIPE)	0.0212	0.0010	mg/Kg wet	0.0200		106	70-130			
1,4-Dioxane	0.196	0.10	mg/Kg wet	0.200		98.1	40-160			
Ethylbenzene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130			
Hexachlorobutadiene	0.0181	0.0020	mg/Kg wet	0.0200		90.7	70-130			
2-Hexanone (MBK)	0.219	0.020	mg/Kg wet	0.200		109	40-160			
Isopropylbenzene (Cumene)	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
p-Isopropyltoluene (p-Cymene)	0.0190	0.0020	mg/Kg wet	0.0200		95.1	70-130			
Methyl tert-Butyl Ether (MTBE)	0.0199	0.0040	mg/Kg wet	0.0200		99.7	70-130			
Methylene Chloride	0.0199	0.020	mg/Kg wet	0.0200		99.4	70-130			
4-Methyl-2-pentanone (MIBK)	0.220	0.020	mg/Kg wet	0.200		110	40-160			
Naphthalene	0.0201	0.0040	mg/Kg wet	0.0200		100	70-130			
n-Propylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
Styrene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130			
1,1,1,2-Tetrachloroethane	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130			
1,1,2,2-Tetrachloroethane	0.0220	0.0010	mg/Kg wet	0.0200		110	70-130			
Tetrachloroethylene	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130			
Tetrahydrofuran	0.0210	0.010	mg/Kg wet	0.0200		105	70-130			
Toluene	0.0191	0.0020	mg/Kg wet	0.0200		95.3	70-130			
1,2,3-Trichlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130			
1,2,4-Trichlorobenzene	0.0184	0.0020	mg/Kg wet	0.0200		92.2	70-130			
1,1,1-Trichloroethane	0.0195	0.0020	mg/Kg wet	0.0200		97.5	70-130			
1,1,2-Trichloroethane	0.0197	0.0020	mg/Kg wet	0.0200		98.5	70-130			
Trichloroethylene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130			
Trichlorofluoromethane (Freon 11)	0.0227	0.010	mg/Kg wet	0.0200		114	70-130			
1,2,3-Trichloropropane	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130			
1,2,4-Trimethylbenzene	0.0185	0.0020	mg/Kg wet	0.0200		92.7	70-130			
1,3,5-Trimethylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130			
Vinyl Chloride	0.0209	0.010	mg/Kg wet	0.0200		105	70-130			
m+p Xylene	0.0418	0.0040	mg/Kg wet	0.0400		104	70-130			
o-Xylene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130			
Surrogate: 1.2-Dichloroethane-d4	0.0493		mg/Kg wet	0.0500		98.6	70-130			
Surrogate: Toluene-d8	0.0494		mg/Kg wet	0.0500		98.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.0508		mg/Kg wet	0.0500		102	70-130			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B330910 - SW-846 5035											
LCS Dup (B330910-BSD1)				Prepared &	Analyzed: 02	/08/23					
Acetone	0.211	0.10	mg/Kg wet	0.200		106	40-160	6.34	20		1
tert-Amyl Methyl Ether (TAME)	0.0201	0.0010	mg/Kg wet	0.0200		101	70-130	0.0993	20		
Benzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	3.63	20		
Bromobenzene	0.0229	0.0020	mg/Kg wet	0.0200		115	70-130	0.955	20		
Bromochloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	0.381	20		
Bromodichloromethane	0.0197	0.0020	mg/Kg wet	0.0200		98.6	70-130	0.707	20		
Bromoform	0.0200	0.0020	mg/Kg wet	0.0200		99.8	70-130	0.201	20		
Bromomethane	0.0250	0.010	mg/Kg wet	0.0200		125	40-160	3.15	20	V-20	1
2-Butanone (MEK)	0.240	0.040	mg/Kg wet	0.200		120	40-160	6.20	20		1
n-Butylbenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.6	70-130	0.957	20		
sec-Butylbenzene	0.0189	0.0020	mg/Kg wet	0.0200		94.5	70-130	0.957	20		
tert-Butylbenzene	0.0190	0.0020	mg/Kg wet	0.0200		94.8	70-130	0.847	20		
tert-Butyl Ethyl Ether (TBEE)	0.0200	0.0010	mg/Kg wet	0.0200		100	70-130	0.401	20		
Carbon Disulfide	0.212	0.010	mg/Kg wet	0.200		106	70-130	1.33	20	V-36	
Carbon Tetrachloride	0.0194	0.0020	mg/Kg wet	0.0200		97.0	70-130	2.61	20		
Chlorobenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.0978	20		
Chlorodibromomethane	0.0196	0.0010	mg/Kg wet	0.0200		98.1	70-130	1.23	20		
Chloroethane	0.0273	0.020	mg/Kg wet	0.0200		137 *	70-130	3.73	20	L-02, V-20	
Chloroform	0.0200	0.0040	mg/Kg wet	0.0200		100	70-130	2.12	20		
Chloromethane	0.0203	0.010	mg/Kg wet	0.0200		102	40-160	2.90	20		ĺ
2-Chlorotoluene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	1.20	20		
4-Chlorotoluene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.393	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0177	0.0020	mg/Kg wet	0.0200		88.5	70-130	3.68	20		
1,2-Dibromoethane (EDB)	0.0204	0.0010	mg/Kg wet	0.0200		102	70-130	1.98	20		
Dibromomethane	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.0979	20		
1,2-Dichlorobenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.4	70-130	0.201	20		
1,3-Dichlorobenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.1	70-130	1.58	20		
1,4-Dichlorobenzene	0.0193	0.0020	mg/Kg wet	0.0200		96.5	70-130	0.415	20		
Dichlorodifluoromethane (Freon 12)	0.0257	0.020	mg/Kg wet	0.0200		128	40-160	3.89	20	V-20, V-36	1
1,1-Dichloroethane	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	2.78	20		
1,2-Dichloroethane	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	2.22	20		
1,1-Dichloroethylene	0.0210	0.0040	mg/Kg wet	0.0200		105	70-130	3.10	20		
cis-1,2-Dichloroethylene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	1.91	20		
trans-1,2-Dichloroethylene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	2.11	20		
1,2-Dichloropropane	0.0196	0.0020	mg/Kg wet	0.0200		97.9	70-130	0.00	20		
1,3-Dichloropropane	0.0209	0.0010	mg/Kg wet	0.0200		105	70-130	0.0955	20		
2,2-Dichloropropane	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130	1.58	20		
1,1-Dichloropropene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	3.89	20		
cis-1,3-Dichloropropene	0.0190	0.0010	mg/Kg wet	0.0200		95.2	70-130	1.80	20		
trans-1,3-Dichloropropene	0.0194	0.0010	mg/Kg wet	0.0200		97.0	70-130	1.98	20		
Diethyl Ether	0.0204	0.020	mg/Kg wet	0.0200		102	70-130	0.294	20		
Diisopropyl Ether (DIPE)	0.0206	0.0010	mg/Kg wet	0.0200		103	70-130	2.87	20		
1,4-Dioxane	0.223	0.10	mg/Kg wet	0.200		112	40-160	12.9	20		i
Ethylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	0.195	20		
Hexachlorobutadiene	0.0185	0.0020	mg/Kg wet	0.0200		92.6	70-130	2.07	20		
2-Hexanone (MBK)	0.228	0.020	mg/Kg wet	0.200		114	40-160	3.96	20		ĺ
Isopropylbenzene (Cumene)	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	1.48	20		
p-Isopropyltoluene (p-Cymene)	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130	0.733	20		
Methyl tert-Butyl Ether (MTBE)	0.0201	0.0040	mg/Kg wet	0.0200		101	70-130	0.998	20		
Methylene Chloride	0.0202	0.020	mg/Kg wet	0.0200		101	70-130	1.50	20		
4-Methyl-2-pentanone (MIBK)	0.227	0.020	mg/Kg wet	0.200		113	40-160	3.30	20		i
Naphthalene	0.0201	0.0040	mg/Kg wet	0.0200		100	70-130	0.199	20		

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330910 - SW-846 5035										
LCS Dup (B330910-BSD1)			1	Prepared & A	Analyzed: 02	/08/23				
n-Propylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	1.28	20	
Styrene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130	0.289	20	
1,1,1,2-Tetrachloroethane	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130	3.26	20	
1,1,2,2-Tetrachloroethane	0.0222	0.0010	mg/Kg wet	0.0200		111	70-130	0.813	20	
Tetrachloroethylene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130	2.97	20	
Tetrahydrofuran	0.0228	0.010	mg/Kg wet	0.0200		114	70-130	7.94	20	
Toluene	0.0187	0.0020	mg/Kg wet	0.0200		93.4	70-130	2.01	20	
1,2,3-Trichlorobenzene	0.0189	0.0020	mg/Kg wet	0.0200		94.6	70-130	1.26	20	
1,2,4-Trichlorobenzene	0.0177	0.0020	mg/Kg wet	0.0200		88.4	70-130	4.21	20	
1,1,1-Trichloroethane	0.0198	0.0020	mg/Kg wet	0.0200		99.2	70-130	1.73	20	
1,1,2-Trichloroethane	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	1.81	20	
Trichloroethylene	0.0199	0.0020	mg/Kg wet	0.0200		99.4	70-130	1.01	20	
Trichlorofluoromethane (Freon 11)	0.0234	0.010	mg/Kg wet	0.0200		117	70-130	2.95	20	
1,2,3-Trichloropropane	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	0.0920	20	
1,2,4-Trimethylbenzene	0.0190	0.0020	mg/Kg wet	0.0200		94.9	70-130	2.35	20	
1,3,5-Trimethylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.878	20	
Vinyl Chloride	0.0217	0.010	mg/Kg wet	0.0200		108	70-130	3.66	20	
m+p Xylene	0.0416	0.0040	mg/Kg wet	0.0400		104	70-130	0.432	20	
o-Xylene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.391	20	
Surrogate: 1,2-Dichloroethane-d4	0.0500		mg/Kg wet	0.0500		99.9	70-130			
Surrogate: Toluene-d8	0.0491		mg/Kg wet	0.0500		98.3	70-130			
Surrogate: 4-Bromofluorobenzene	0.0498		mg/Kg wet	0.0500		99.6	70-130			

		Denertine		Sec.ilea			0/DEC		DDD	
Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B330933 - SW-846 3546										
Blank (B330933-BLK1)			-	Prepared: 02	2/08/23 Anal	yzed: 02/10/2	23			
Biphenyl	ND	0.067	mg/Kg wet							
Acenaphthene	ND	0.17	mg/Kg wet							
Acenaphthylene	ND	0.17	mg/Kg wet							
Acetophenone	ND	0.34	mg/Kg wet							
Aniline	ND	0.34	mg/Kg wet							V-05
Anthracene	ND	0.17	mg/Kg wet							
Benzo(a)anthracene	ND	0.17	mg/Kg wet							
Benzo(a)pyrene	ND	0.17	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.17	mg/Kg wet							
Benzo(g,h,i)perylene	ND	0.17	mg/Kg wet							
Benzo(k)fluoranthene	ND	0.17	mg/Kg wet							
Bis(2-chloroethoxy)methane	ND	0.34	mg/Kg wet							
Bis(2-chloroethyl)ether	ND	0.34	mg/Kg wet							
Bis(2-chloroisopropyl)ether	ND	0.34	mg/Kg wet							
Bis(2-Ethylhexyl)phthalate	ND	0.34	mg/Kg wet							
4-Bromophenylphenylether	ND	0.34	mg/Kg wet							
Butylbenzylphthalate	ND	0.34	mg/Kg wet							
4-Chloroaniline	ND	0.66	mg/Kg wet							
2-Chloronaphthalene	ND	0.34	mg/Kg wet							
2-Chlorophenol	ND	0.34	mg/Kg wet							
Chrysene	ND	0.17	mg/Kg wet							
Dibenz(a,h)anthracene	ND	0.17	mg/Kg wet							
Dibenzofuran	ND	0.34	mg/Kg wet							
Di-n-butylphthalate	ND	0.34	mg/Kg wet							
1,2-Dichlorobenzene	ND	0.34	mg/Kg wet							
1,3-Dichlorobenzene	ND	0.34	mg/Kg wet							
1,4-Dichlorobenzene	ND	0.34	mg/Kg wet							
3,3-Dichlorobenzidine	ND	0.17	mg/Kg wet							
2,4-Dichlorophenol	ND	0.34	mg/Kg wet							
Diethylphthalate	ND	0.34	mg/Kg wet							
2,4-Dimethylphenol	ND	0.34	mg/Kg wet							
Dimethylphthalate	ND	0.34	mg/Kg wet							
2,4-Dinitrophenol	ND	0.66	mg/Kg wet							
2,4-Dinitrotoluene	ND	0.34	mg/Kg wet							
2,6-Dinitrotoluene	ND	0.34	mg/Kg wet							
Di-n-octylphthalate	ND	0.34	mg/Kg wet							V-05
l,2-Diphenylhydrazine/Azobenzene	ND	0.34	mg/Kg wet							
Fluoranthene	ND	0.17	mg/Kg wet							
Fluorene	ND	0.17	mg/Kg wet							
Hexachlorobenzene	ND	0.34	mg/Kg wet							
Hexachlorobutadiene	ND	0.34	mg/Kg wet							
Indene(1, 2, 2, ad)nymana	ND	0.54	mg/Kg wet							
Indeno(1,2,5-cd)pyrene	ND	0.17	mg/Kg wet							
2 Mathylnanhthalana	ND	0.54	mg/Kg wet							
2-Methylnhenol	ND	0.1/	mg/Kg wet							
2-memyiphenol	ND	0.54	mg/Kg wet							
Nanhthalana	ND	0.54	mg/Kg wet							
Nitrohenzene	ND	0.17	mg/Kg wet							
2-Nitrophenol	ND	0.34	mg/Kg wet							
4-Nitrophenol	ND	0.54	mg/Kg wet							
Pentachlorophenol		0.34	mg/Kg wet							V-05
	IND	0.54								v-05

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B330933 - SW-846 3546										
Blank (B330933-BLK1)				Prepared: 02	2/08/23 Analy	/zed: 02/10/2	23			
Phenanthrene	ND	0.17	mg/Kg wet							
Phenol	ND	0.34	mg/Kg wet							
Pyrene	ND	0.17	mg/Kg wet							
Pyridine	ND	0.34	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.34	mg/Kg wet							
2,4,5-Trichlorophenol	ND	0.34	mg/Kg wet							
2,4,6-Trichlorophenol	ND	0.34	mg/Kg wet							
Surrogate: 2-Fluorophenol	5.67		mg/Kg wet	6.67		85.0	30-130			
Surrogate: Phenol-d6	5.73		mg/Kg wet	6.67		85.9	30-130			
Surrogate: Nitrobenzene-d5	2.60		mg/Kg wet	3.33		78.0	30-130			
Surrogate: 2-Fluorobiphenyl	2.65		mg/Kg wet	3.33		79.5	30-130			
Surrogate: 2,4,6-Tribromophenol	5.52		mg/Kg wet	6.67		82.7	30-130			
Surrogate: p-Terphenyl-d14	2.78		mg/Kg wet	3.33		83.3	30-130			
LCS (B330933-BS1)				Prepared: 02	2/08/23 Analy	/zed: 02/10/2	23			
Biphenyl	1 53	0.067	mg/Kg wet	1.67		91.9	40-140			
Acenaphthene	1.36	0.17	mg/Kg wet	1.67		81.7	40-140			
Acenaphthylene	1.45	0.17	mg/Kg wet	1.67		87.1	40-140			
Acetophenone	1 44	0.34	mg/Kg wet	1.67		86.7	40-140			
Aniline	1.13	0.34	mg/Kg wet	1.67		67.7	40-140			V-05
Anthracene	1.13	0.17	mg/Kg wet	1.67		91.3	40-140			
Benzo(a)anthracene	1.32	0.17	mg/Kg wet	1.67		88.1	40-140			
Benzo(a)pyrene	1 39	0.17	mg/Kg wet	1.67		83.1	40-140			
Benzo(b)fluoranthene	1.57	0.17	mg/Kg wet	1.67		90.5	40-140			
Benzo(g,h,i)perylene	1.07	0.17	mg/Kg wet	1.67		64.2	40-140			
Benzo(k)fluoranthene	1.59	0.17	mg/Kg wet	1.67		95.7	40-140			
Bis(2-chloroethoxy)methane	1 39	0.34	mg/Kg wet	1.67		83.6	40-140			
Bis(2-chloroethyl)ether	1.53	0.34	mg/Kg wet	1.67		91.9	40-140			
Bis(2-chloroisopropyl)ether	1.55	0.34	mg/Kg wet	1.67		86.6	40-140			
Bis(2-Ethylhexyl)phthalate	1 33	0.34	mg/Kg wet	1.67		79.8	40-140			
4-Bromophenylphenylether	1.55	0.34	mg/Kg wet	1.67		86.5	40-140			
Butylbenzylphthalate	1 34	0.34	mg/Kg wet	1.67		80.7	40-140			
4-Chloroaniline	1.20	0.66	mg/Kg wet	1.67		72.1	15-140			
2-Chloronaphthalene	1.45	0.34	mg/Kg wet	1.67		86.9	40-140			
2-Chlorophenol	1.44	0.34	mg/Kg wet	1.67		86.3	30-130			
Chrysene	1.49	0.17	mg/Kg wet	1.67		89.2	40-140			
Dibenz(a,h)anthracene	1.13	0.17	mg/Kg wet	1.67		67.8	40-140			
Dibenzofuran	1.47	0.34	mg/Kg wet	1.67		88.4	40-140			
Di-n-butylphthalate	1.43	0.34	mg/Kg wet	1.67		85.6	40-140			
1,2-Dichlorobenzene	1.33	0.34	mg/Kg wet	1.67		79.8	40-140			
1,3-Dichlorobenzene	1.28	0.34	mg/Kg wet	1.67		76.7	40-140			
1,4-Dichlorobenzene	1.25	0.34	mg/Kg wet	1.67		75.0	40-140			
3,3-Dichlorobenzidine	1.69	0.17	mg/Kg wet	1.67		101	40-140			
2,4-Dichlorophenol	1.39	0.34	mg/Kg wet	1.67		83.3	30-130			
Diethylphthalate	1.36	0.34	mg/Kg wet	1.67		81.8	40-140			
2,4-Dimethylphenol	1.42	0.34	mg/Kg wet	1.67		85.0	30-130			
Dimethylphthalate	1.48	0.34	mg/Kg wet	1.67		89.0	40-140			
2,4-Dinitrophenol	1.05	0.66	mg/Kg wet	1.67		62.7	15-140			
2,4-Dinitrotoluene	1.59	0.34	mg/Kg wet	1.67		95.4	40-140			
2,6-Dinitrotoluene	1.56	0.34	mg/Kg wet	1.67		93.4	40-140			
Di-n-octylphthalate	1.29	0.34	mg/Kg wet	1.67		77.6	40-140			V-05
1,2-Diphenylhydrazine/Azobenzene	1.44	0.34	mg/Kg wet	1.67		86.1	40-140			

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B330933 - SW-846 3546											
LCS (B330933-BS1)				Prepared: 02	2/08/23 Analy	zed: 02/10/2	23				
Fluoranthene	1.66	0.17	mg/Kg wet	1.67		99.8	40-140				
Fluorene	1.47	0.17	mg/Kg wet	1.67		88.1	40-140				
Hexachlorobenzene	1.48	0.34	mg/Kg wet	1.67		88.6	40-140				
Hexachlorobutadiene	1.28	0.34	mg/Kg wet	1.67		76.9	40-140				
Hexachloroethane	1.29	0.34	mg/Kg wet	1.67		77.6	40-140				
Indeno(1,2,3-cd)pyrene	1.35	0.17	mg/Kg wet	1.67		81.0	40-140				
Isophorone	1.48	0.34	mg/Kg wet	1.67		89.0	40-140				
2-Methylnaphthalene	1.32	0.17	mg/Kg wet	1.67		78.9	40-140				
2-Methylphenol	1.53	0.34	mg/Kg wet	1.67		92.0	30-130				
3/4-Methylphenol	1.61	0.34	mg/Kg wet	1.67		96.6	30-130				
Naphthalene	1.39	0.17	mg/Kg wet	1.67		83.3	40-140				
Nitrobenzene	1.40	0.34	mg/Kg wet	1.67		83.9	40-140				
2-Nitrophenol	1.35	0.34	mg/Kg wet	1.67		80.9	30-130				
4-Nitrophenol	1.73	0.66	mg/Kg wet	1.67		104	15-140				
Pentachlorophenol	1.12	0.34	mg/Kg wet	1.67		67.0	30-130			V-05	
Phenanthrene	1.52	0.17	mg/Kg wet	1.67		91.4	40-140				
Phenol	1.60	0.34	mg/Kg wet	1.67		96.0	15-140				
Pyrene	1.32	0.17	mg/Kg wet	1.67		79.5	40-140				
Pyridine	0.914	0.34	mg/Kg wet	1.67		54.9	30-140				
1,2,4-Trichlorobenzene	1.30	0.34	mg/Kg wet	1.67		78.1	40-140				
2,4,5-Trichlorophenol	1.52	0.34	mg/Kg wet	1.67		91.3	30-130				
2,4,6-Trichlorophenol	1.49	0.34	mg/Kg wet	1.67		89.3	30-130				
Surrogate: 2-Fluorophenol	6.28		mg/Kg wet	6.67		94.3	30-130				
Surrogate: Phenol-d6	6.48		mg/Kg wet	6.67		97.2	30-130				
Surrogate: Nitrobenzene-d5	2.95		mg/Kg wet	3.33		88.6	30-130				
Surrogate: 2-Fluorobiphenyl	3.01		mg/Kg wet	3.33		90.3	30-130				
Surrogate: 2,4,6-Tribromophenol	6.65		mg/Kg wet	6.67		99.8	30-130				
Surrogate: p-Terphenyl-d14	2.95		mg/Kg wet	3.33		88.6	30-130				
LCS Dup (B330933-BSD1)				Prepared: 02	2/08/23 Analy	zed: 02/10/2	23				
Biphenyl	1.36	0.067	mg/Kg wet	1.67		81.8	40-140	11.6	20		
Acenaphthene	1.24	0.17	mg/Kg wet	1.67		74.5	40-140	9.32	30		
Acenaphthylene	1.31	0.17	mg/Kg wet	1.67		78.3	40-140	10.6	30		
Acetophenone	1.29	0.34	mg/Kg wet	1.67		77.4	40-140	11.3	30		
Aniline	0.868	0.34	mg/Kg wet	1.67		52.1	40-140	26.1	30	V-05	
Anthracene	1.36	0.17	mg/Kg wet	1.67		81.7	40-140	11.1	30		
Benzo(a)anthracene	1.29	0.17	mg/Kg wet	1.67		77.4	40-140	12.9	30		
Benzo(a)pyrene	1.19	0.17	mg/Kg wet	1.67		71.6	40-140	14.9	30		
Benzo(b)fluoranthene	1.30	0.17	mg/Kg wet	1.67		78.1	40-140	14.7	30		
Benzo(g,h,i)perylene	0.989	0.17	mg/Kg wet	1.67		59.3	40-140	7.90	30		
Benzo(k)fluoranthene	1.36	0.17	mg/Kg wet	1.67		81.6	40-140	15.9	30		
Bis(2-chloroethoxy)methane	1.25	0.34	mg/Kg wet	1.67		75.2	40-140	10.6	30		
Bis(2-chloroethyl)ether	1.35	0.34	mg/Kg wet	1.67		81.0	40-140	12.7	30		
Bis(2-chloroisopropyl)ether	1.30	0.34	mg/Kg wet	1.67		77.9	40-140	10.6	30		
Bis(2-Ethylhexyl)phthalate	1.16	0.34	mg/Kg wet	1.67		69.4	40-140	14.0	30		
4-Bromophenylphenylether	1.30	0.34	mg/Kg wet	1.67		78.0	40-140	10.4	30		
Butylbenzylphthalate	1.20	0.34	mg/Kg wet	1.67		72.2	40-140	11.1	30		
4-Chloroaniline	0.911	0.66	mg/Kg wet	1.67		54.7	15-140	27.5	30		
2-Chloronaphthalene	1.18	0.34	mg/Kg wet	1.67		71.0	40-140	20.2	30		
2-Chlorophenol	1.29	0.34	mg/Kg wet	1.67		77.7	30-130	10.5	30		
Chrysene	1.30	0.17	mg/Kg wet	1.67		78.0	40-140	13.4	30		
Dibenz(a,h)anthracene	1.06	0.17	mg/Kg wet	1.67		63.7	40-140	6.23	30		

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330933 - SW-846 3546										
LCS Dup (B330933-BSD1)				Prepared: 02	2/08/23 Anal	yzed: 02/10/2	23			
Dibenzofuran	1.32	0.34	mg/Kg wet	1.67		79.0	40-140	11.3	30	
Di-n-butylphthalate	1.31	0.34	mg/Kg wet	1.67		78.5	40-140	8.73	30	
1,2-Dichlorobenzene	1.22	0.34	mg/Kg wet	1.67		73.3	40-140	8.44	30	
1,3-Dichlorobenzene	1.16	0.34	mg/Kg wet	1.67		69.5	40-140	9.85	30	
1,4-Dichlorobenzene	1.19	0.34	mg/Kg wet	1.67		71.2	40-140	5.25	30	
3,3-Dichlorobenzidine	1.27	0.17	mg/Kg wet	1.67		76.0	40-140	28.7	30	
2,4-Dichlorophenol	1.26	0.34	mg/Kg wet	1.67		75.6	30-130	9.74	30	
Diethylphthalate	1.26	0.34	mg/Kg wet	1.67		75.3	40-140	8.27	30	
2,4-Dimethylphenol	1.29	0.34	mg/Kg wet	1.67		77.6	30-130	9.17	30	
Dimethylphthalate	1.35	0.34	mg/Kg wet	1.67		81.3	40-140	9.11	30	
2,4-Dinitrophenol	0.961	0.66	mg/Kg wet	1.67		57.6	15-140	8.44	30	
2,4-Dinitrotoluene	1.43	0.34	mg/Kg wet	1.67		85.7	40-140	10.8	30	
2,6-Dinitrotoluene	1.49	0.34	mg/Kg wet	1.67		89.4	40-140	4.42	30	
Di-n-octylphthalate	1.12	0.34	mg/Kg wet	1.67		67.2	40-140	14.4	30	V-05
1,2-Diphenylhydrazine/Azobenzene	1.27	0.34	mg/Kg wet	1.67		76.0	40-140	12.5	30	
Fluoranthene	1.48	0.17	mg/Kg wet	1.67		89.1	40-140	11.4	30	
Fluorene	1.33	0.17	mg/Kg wet	1.67		79.7	40-140	10.0	30	
Hexachlorobenzene	1.39	0.34	mg/Kg wet	1.67		83.5	40-140	5.93	30	
Hexachlorobutadiene	1.19	0.34	mg/Kg wet	1.67		71.5	40-140	7.22	30	
Hexachloroethane	1.21	0.34	mg/Kg wet	1.67		72.5	40-140	6.79	30	
Indeno(1,2,3-cd)pyrene	1.22	0.17	mg/Kg wet	1.67		73.3	40-140	10.0	30	
Isophorone	1.34	0.34	mg/Kg wet	1.67		80.7	40-140	9.83	30	
2-Methylnaphthalene	1.21	0.17	mg/Kg wet	1.67		72.7	40-140	8.23	30	
2-Methylphenol	1.35	0.34	mg/Kg wet	1.67		80.9	30-130	12.9	30	
3/4-Methylphenol	1.42	0.34	mg/Kg wet	1.67		85.1	30-130	12.7	30	
Naphthalene	1.26	0.17	mg/Kg wet	1.67		75.6	40-140	9.72	30	
Nitrobenzene	1.26	0.34	mg/Kg wet	1.67		75.4	40-140	10.7	30	
2-Nitrophenol	1.24	0.34	mg/Kg wet	1.67		74.5	30-130	8.26	30	
4-Nitrophenol	1.53	0.66	mg/Kg wet	1.67		92.1	15-140	12.0	30	
Pentachlorophenol	1.05	0.34	mg/Kg wet	1.67		62.8	30-130	6.56	30	V-05
Phenanthrene	1.36	0.17	mg/Kg wet	1.67		81.3	40-140	11.7	30	
Phenol	1.35	0.34	mg/Kg wet	1.67		81.1	15-140	16.8	30	
Pyrene Dani din a	1.19	0.17	mg/Kg wet	1.67		/1.6	40-140	10.4	30	
	0.828	0.34	mg/Kg wet	1.67		49.7	30-140	9.91	30	
1,2,4-Trichlorobenzene	1.20	0.34	mg/Kg wet	1.67		72.1	40-140	7.99	30	
2,4,5-1 richlorephenol	1.39	0.34	mg/Kg wet	1.67		83.5	30-130	8.97	30	
2,4,0-11101010000000	1.34	0.34	mg/Kg wet	1.67		80.4	30-130	10.5	30	
Surrogate: 2-Fluorophenol	5.63		mg/Kg wet	6.67		84.5	30-130			
Surrogate: Phenol-d6	5.72		mg/Kg wet	6.67		85.7	30-130			
Surrogate: Nitrobenzene-d5	2.64		mg/Kg wet	3.33		79.1	30-130			
Surrogate: 2-Fluorobiphenyl	2.72		mg/Kg wet	3.33		81.5	30-130			
Surrogate: 2,4,6-Tribromophenol	6.02		mg/Kg wet	6.67		90.3	30-130			
Surrogate: p-Terphenyl-d14	2.62		mg/Kg wet	3.33		78.6	30-130			

Polychlorinated Biphenyls By GC/ECD - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330896 - SW-846 3546										
Blank (B330896-BLK1)				Prepared: 02	2/08/23 Analy	yzed: 02/09/2	23			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
Aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
Aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1268	ND	0.020	mg/Kg wet							
Aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
Surrogate: Decachlorobiphenyl	0.188		mg/Kg wet	0.200		94.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.200		mg/Kg wet	0.200		100	30-150			
Surrogate: Tetrachloro-m-xylene	0.161		mg/Kg wet	0.200		80.5	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.183		mg/Kg wet	0.200		91.6	30-150			
LCS (B330896-BS1)				Prepared: 02	2/08/23 Anal	yzed: 02/09/2	23			
Aroclor-1016	0.17	0.020	mg/Kg wet	0.200		84.8	40-140			
Aroclor-1016 [2C]	0.16	0.020	mg/Kg wet	0.200		77.9	40-140			
Aroclor-1260	0.17	0.020	mg/Kg wet	0.200		84.8	40-140			
Aroclor-1260 [2C]	0.16	0.020	mg/Kg wet	0.200		79.1	40-140			
Surrogate: Decachlorobiphenyl	0.187		mg/Kg wet	0.200		93.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.198		mg/Kg wet	0.200		99.2	30-150			
Surrogate: Tetrachloro-m-xylene	0.159		mg/Kg wet	0.200		79.3	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.181		mg/Kg wet	0.200		90.5	30-150			
LCS Dup (B330896-BSD1)				Prepared: 02	2/08/23 Analy	yzed: 02/09/2	23			
Aroclor-1016	0.16	0.020	mg/Kg wet	0.200		80.2	40-140	5.54	30	
Aroclor-1016 [2C]	0.15	0.020	mg/Kg wet	0.200		74.9	40-140	3.85	30	
Aroclor-1260	0.16	0.020	mg/Kg wet	0.200		80.7	40-140	4.91	30	
Aroclor-1260 [2C]	0.15	0.020	mg/Kg wet	0.200		76.1	40-140	3.92	30	
Surrogate: Decachlorobiphenyl	0.184		mg/Kg wet	0.200		92.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.196		mg/Kg wet	0.200		98.2	30-150			
Surrogate: Tetrachloro-m-xylene	0.158		mg/Kg wet	0.200		78.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.181		mg/Kg wet	0.200		90.5	30-150			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330895 - SW-846 3546										
Blank (B330895-BLK1)				Prepared: 02	2/08/23 Analy	zed: 02/09/2	.3			
C9-C18 Aliphatics	ND	10	mg/Kg wet							
C19-C36 Aliphatics	ND	10	mg/Kg wet							
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg wet							
C11-C22 Aromatics	ND	10	mg/Kg wet							
Acenaphthene	ND	0.10	mg/Kg wet							
Acenaphthylene	ND	0.10	mg/Kg wet							
Anthracene	ND	0.10	mg/Kg wet							
Benzo(a)anthracene	ND	0.10	mg/Kg wet							
Benzo(a)pyrene	ND	0.10	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.10	mg/Kg wet							
Benzo(g,h,i)perylene	ND	0.10	mg/Kg wet							
Benzo(k)fluoranthene	ND	0.10	mg/Kg wet							
Chrysene	ND	0.10	mg/Kg wet							
Dibenz(a,h)anthracene	ND	0.10	mg/Kg wet							
Fluoranthene	ND	0.10	mg/Kg wet							
Fluorene	ND	0.10	mg/Kg wet							
Indeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg wet							
2-Methylnaphthalene	ND	0.10	mg/Kg wet							
Naphthalene	ND	0.10	mg/Kg wet							
Phenanthrene	ND	0.10	mg/Kg wet							
Pyrene	ND	0.10	mg/Kg wet							
Naphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
2-Methyinaphthaiene-aliphatic fraction	ND	0.10	mg/Kg wet							
Surrogate: Chlorooctadecane (COD)	3.70		mg/Kg wet	5.00		74.0	40-140			
Surrogate: o-Terphenyl (OTP)	3.94		mg/Kg wet	5.00		78.8	40-140			
Surrogate: 2-Bromonaphthalene	4.87		mg/Kg wet	5.00		97.4	40-140			
Surrogate: 2-Fluorobiphenyl	4.83		mg/Kg wet	5.00		96.7	40-140			
LCS (B330895-BS1)				Prepared: 02	2/08/23 Analy	zed: 02/09/2	.3			
C9-C18 Aliphatics	25.1	10	mg/Kg wet	30.0		83.7	40-140			
C19-C36 Aliphatics	35.2	10	mg/Kg wet	40.0		88.0	40-140			
Unadjusted C11-C22 Aromatics	72.0	10	mg/Kg wet	85.0		84.7	40-140			
Acenaphthene	4.02	0.10	mg/Kg wet	5.00		80.4	40-140			
Acenaphthylene	3.72	0.10	mg/Kg wet	5.00		74.4	40-140			
Anthracene	3.99	0.10	mg/Kg wet	5.00		79.8	40-140			
Benzo(a)anthracene	4.11	0.10	mg/Kg wet	5.00		82.2	40-140			
Benzo(a)pyrene	4.20	0.10	mg/Kg wet	5.00		84.1	40-140			
Benzo(b)fluoranthene	4.04	0.10	mg/Kg wet	5.00		80.8	40-140			
Benzo(g,h,1)perylene	3.98	0.10	mg/Kg wet	5.00		79.7	40-140			
Benzo(k)fluoranthene	3.89	0.10	mg/Kg wet	5.00		77.8	40-140			
Chrysene	4.31	0.10	mg/Kg wet	5.00		86.1	40-140			
Dibenz(a,h)anthracene	4.10	0.10	mg/Kg wet	5.00		82.1	40-140			
Fluoranthene	4.01	0.10	mg/Kg wet	5.00		80.3	40-140			
Fluorene	3.99	0.10	mg/Kg wet	5.00		79.8	40-140			
2 Mathematical and a second se	4.03	0.10	mg/Kg wet	5.00		80.5	40-140			
2-Methylnaphthalene	3.86	0.10	mg/Kg wet	5.00		77.2	40-140			
Dhananthrana	3.75	0.10	mg/V a wet	5.00		/5.0	40-140			
Purene	4.06	0.10	mg/Kg wet	5.00		01.2 82.0	40-140			
Nanhthalene-alinhatic fraction	4.10	0.10	mg/K g wet	5.00		62.0	40-140			
2-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/K g wet	5.00			0-5			
	ND	0.10	ing is wet	5.00			0-5			
Surrogate: Chlorooctadecane (COD)	3.72		mg/Kg wet	5.00		74.4	40-140			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330895 - SW-846 3546										
LCS (B330895-BS1)				Prepared: 02	2/08/23 Analy	zed: 02/09/2	23			
Surrogate: o-Terphenyl (OTP)	3.92		mg/Kg wet	5.00		78.4	40-140			
Surrogate: 2-Bromonaphthalene	4.86		mg/Kg wet	5.00		97.2	40-140			
Surrogate: 2-Fluorobiphenyl	4.96		mg/Kg wet	5.00		99.2	40-140			
LCS Dup (B330895-BSD1)				Prepared: 02	2/08/23 Analy	zed: 02/09/2	23			
C9-C18 Aliphatics	21.8	10	mg/Kg wet	30.0		72.7	40-140	14.1	25	
C19-C36 Aliphatics	33.1	10	mg/Kg wet	40.0		82.9	40-140	6.03	25	
Unadjusted C11-C22 Aromatics	66.1	10	mg/Kg wet	85.0		77.7	40-140	8.57	25	
Acenaphthene	3.59	0.10	mg/Kg wet	5.00		71.7	40-140	11.4	25	
Acenaphthylene	3.32	0.10	mg/Kg wet	5.00		66.3	40-140	11.5	25	
Anthracene	3.68	0.10	mg/Kg wet	5.00		73.5	40-140	8.16	25	
Benzo(a)anthracene	3.80	0.10	mg/Kg wet	5.00		76.0	40-140	7.77	25	
Benzo(a)pyrene	3.88	0.10	mg/Kg wet	5.00		77.7	40-140	7.92	25	
Benzo(b)fluoranthene	3.73	0.10	mg/Kg wet	5.00		74.7	40-140	7.90	25	
Benzo(g,h,i)perylene	3.68	0.10	mg/Kg wet	5.00		73.6	40-140	7.88	25	
Benzo(k)fluoranthene	3.60	0.10	mg/Kg wet	5.00		72.0	40-140	7.72	25	
Chrysene	3.98	0.10	mg/Kg wet	5.00		79.5	40-140	7.97	25	
Dibenz(a,h)anthracene	3.78	0.10	mg/Kg wet	5.00		75.6	40-140	8.22	25	
Fluoranthene	3.72	0.10	mg/Kg wet	5.00		74.4	40-140	7.61	25	
Fluorene	3.67	0.10	mg/Kg wet	5.00		73.4	40-140	8.38	25	
Indeno(1,2,3-cd)pyrene	3.72	0.10	mg/Kg wet	5.00		74.4	40-140	7.94	25	
2-Methylnaphthalene	3.36	0.10	mg/Kg wet	5.00		67.3	40-140	13.8	25	
Naphthalene	3.19	0.10	mg/Kg wet	5.00		63.8	40-140	16.1	25	
Phenanthrene	3.74	0.10	mg/Kg wet	5.00		74.7	40-140	8.34	25	
Pyrene	3.80	0.10	mg/Kg wet	5.00		76.0	40-140	7.63	25	
Naphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
2-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
Surrogate: Chlorooctadecane (COD)	3.51		mg/Kg wet	5.00		70.2	40-140			
Surrogate: o-Terphenyl (OTP)	3.59		mg/Kg wet	5.00		71.7	40-140			
Surrogate: 2-Bromonaphthalene	5.17		mg/Kg wet	5.00		103	40-140			
Surrogate: 2-Fluorobiphenyl	5.25		mg/Kg wet	5.00		105	40-140			
Matrix Spike (B330895-MS1)	Sou	rce: 23B0766	-01	Prepared: 02	2/08/23 Analy	zed: 02/09/2	23			
C9-C18 Aliphatics	26.7	11	mg/Kg dry	33.5	ND	79.5	40-140			
C19-C36 Aliphatics	40.9	11	mg/Kg dry	44.7	ND	91.4	40-140			
Unadjusted C11-C22 Aromatics	95.9	11	mg/Kg dry	95.0	ND	101	40-140			
Acenaphthene	4.79	0.11	mg/Kg dry	5.59	ND	85.7	40-140			
Acenaphthylene	4.38	0.11	mg/Kg dry	5.59	ND	78.3	40-140			
Anthracene	4.94	0.11	mg/Kg dry	5.59	ND	88.3	40-140			
Benzo(a)anthracene	5.74	0.11	mg/Kg dry	5.59	ND	103	40-140			
Benzo(a)pyrene	5.98	0.11	mg/Kg dry	5.59	ND	107	40-140			
Benzo(b)fluoranthene	5.89	0.11	mg/Kg dry	5.59	ND	105	40-140			
Benzo(g,h,i)perylene	5.84	0.11	mg/Kg dry	5.59	ND	105	40-140			
Benzo(k)fluoranthene	5.11	0.11	mg/Kg dry	5.59	ND	91.3	40-140			
Chrysene	5.52	0.11	mg/Kg dry	5.59	ND	98.7	40-140			
Dibenz(a,h)anthracene	5.84	0.11	mg/Kg dry	5.59	ND	104	40-140			
Fluoranthene	5.27	0.11	mg/Kg dry	5.59	ND	94.3	40-140			
Fluorene	4.91	0.11	mg/Kg dry	5.59	ND	87.9	40-140			
Indeno(1,2,3-cd)pyrene	6.08	0.11	mg/Kg dry	5.59	ND	109	40-140			
	4.58	0.11	mg/Kg dry	5.59	ND	81.9	40-140			
	4.15	0.11	mg/Kg dry	5.59	0.0358	73.7	40-140			
Phenanthrene	5.22	0.11	mg/Kg dry	5.59	ND	93.4	40-140			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330895 - SW-846 3546										
Matrix Spike (B330895-MS1)	Sourc	ce: 23B0766	-01	Prepared: 02	2/08/23 Analy	zed: 02/09/2	23			
Pyrene	5.41	0.11	mg/Kg dry	5.59	ND	96.7	40-140			
Surrogate: Chlorooctadecane (COD)	3.83		mg/Kg dry	5.59		68.5	40-140			
Surrogate: o-Terphenyl (OTP)	4.84		mg/Kg dry	5.59		86.5	40-140			
Surrogate: 2-Bromonaphthalene	5.77		mg/Kg dry	5.59		103	40-140			
Surrogate: 2-Fluorobiphenyl	5.72		mg/Kg dry	5.59		102	40-140			
Matrix Spike Dup (B330895-MSD1)	Sourc	ce: 23B0766	-01	Prepared: 02	2/08/23 Analy:	zed: 02/09/2	23			
C9-C18 Aliphatics	23.9	11	mg/Kg dry	33.5	ND	71.3	40-140	10.9	50	
C19-C36 Aliphatics	37.0	11	mg/Kg dry	44.7	ND	82.7	40-140	9.99	50	
Unadjusted C11-C22 Aromatics	92.5	11	mg/Kg dry	95.0	ND	97.3	40-140	3.63	50	
Acenaphthene	4.65	0.11	mg/Kg dry	5.59	ND	83.1	40-140	2.98	50	
Acenaphthylene	4.27	0.11	mg/Kg dry	5.59	ND	76.3	40-140	2.62	50	
Anthracene	4.77	0.11	mg/Kg dry	5.59	ND	85.4	40-140	3.40	50	
Benzo(a)anthracene	5.50	0.11	mg/Kg dry	5.59	ND	98.4	40-140	4.15	50	
Benzo(a)pyrene	5.74	0.11	mg/Kg dry	5.59	ND	103	40-140	4.14	50	
Benzo(b)fluoranthene	5.67	0.11	mg/Kg dry	5.59	ND	101	40-140	3.79	50	
Benzo(g,h,i)perylene	5.57	0.11	mg/Kg dry	5.59	ND	99.6	40-140	4.78	50	
Benzo(k)fluoranthene	4.89	0.11	mg/Kg dry	5.59	ND	87.5	40-140	4.31	50	
Chrysene	5.29	0.11	mg/Kg dry	5.59	ND	94.6	40-140	4.27	50	
Dibenz(a,h)anthracene	5.61	0.11	mg/Kg dry	5.59	ND	100	40-140	3.94	50	
Fluoranthene	5.07	0.11	mg/Kg dry	5.59	ND	90.6	40-140	3.99	50	
Fluorene	4.78	0.11	mg/Kg dry	5.59	ND	85.6	40-140	2.62	50	
Indeno(1,2,3-cd)pyrene	5.85	0.11	mg/Kg dry	5.59	ND	105	40-140	3.84	50	
2-Methylnaphthalene	4.49	0.11	mg/Kg dry	5.59	ND	80.2	40-140	2.09	50	
Naphthalene	4.09	0.11	mg/Kg dry	5.59	0.0358	72.6	40-140	1.50	50	
Phenanthrene	5.05	0.11	mg/Kg dry	5.59	ND	90.3	40-140	3.35	50	
Pyrene	5.20	0.11	mg/Kg dry	5.59	ND	93.1	40-140	3.79	50	
Surrogate: Chlorooctadecane (COD)	3.55		mg/Kg dry	5.59		63.5	40-140			
Surrogate: o-Terphenyl (OTP)	4.69		mg/Kg dry	5.59		83.8	40-140			
Surrogate: 2-Bromonaphthalene	6.23		mg/Kg dry	5.59		111	40-140			
Surrogate: 2-Fluorobiphenyl	6.12		mg/Kg dry	5.59		109	40-140			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330929 - SW-846 3050B										
Blank (B330929-BLK1)				Prepared: 02	/08/23 Analy	zed: 02/10/2	23			
Antimony	ND	1.6	mg/Kg wet							
Arsenic	ND	3.2	mg/Kg wet							
Barium	ND	1.6	mg/Kg wet							
Beryllium	ND	0.16	mg/Kg wet							
Cadmium	ND	0.32	mg/Kg wet							
Chromium	ND	0.64	mg/Kg wet							
Lead	ND	0.48	mg/Kg wet							
Nickel	ND	0.64	mg/Kg wet							
Selenium	ND	3.2	mg/Kg wet							
Thallium	ND	1.6	mg/Kg wet							
Vanadium	ND	0.64	mg/Kg wet							
Zinc	ND	0.64	mg/Kg wet							
Blank (B330929-BLK2)				Prepared: 02	/08/23 Analy	zed: 02/14/2	23			
Silver	ND	0.32	mg/Kg wet	•						
I CS (R330020 RS1)				Prenared: 02	/08/23 Anoly	zed: 02/10/	23			
Antimony	00.0	4.0	ma/K a wet	111	100/25 Analy	70.2	0.205.4			
Arcenic	88.0	4.9	mg/Kg wet	111		/9.5	0-205.4			
Barium	106	7.9 4 0	mg/Kg wet	112		94.9 00 <i>5</i>	82-118.8			
Bardium	153	4.9	mg/Kg wet	154		99.3 07.9	01.0-110.2			
	118	0.49	mg/Kg wet	121		97.8 02.5	02.2-118.2			
Chromium	183	0.99	mg/Kg wet	190		93.3 04.5	02.1-118.4			
Lead	97.4	2.0	mg/Kg wet	103		94.3 07.5	00.8-118.4			
Nickel	/1.4	1.5	mg/Kg wet	13.2		97.5	02.0-11/.5			
Solonium	242	2.0	mg/Kg wet	249		97.0	81.9-118.1			
Thellium	213	9.9	mg/Kg wet	215		99.2	/8.1-121.9			
I namum Vone dium	80.5	4.9	ing/Kg wet	67.7		119	80.1-120.1			
Vanaulum	173	2.0	mg/Kg wet	1//		97.6	/8-122			
Zinc	347	2.0	ing/kg wet	360		96.4	/9.7-120.3			
LCS (B330929-BS2)				Prepared: 02	/08/23 Analy	zed: 02/14/2	23			
Silver	87.7	0.99	mg/Kg wet	78.5		112	78.9-121.1			
LCS Dup (B330929-BSD1)				Prepared: 02	/08/23 Analy	zed: 02/10/2	23			
Antimony	81.5	4.7	mg/Kg wet	111		73.4	0-205.4	7.72	30	
Arsenic	101	9.3	mg/Kg wet	112		90.2	82-118.8	5.02	30	
Barium	142	4.7	mg/Kg wet	154		92.1	81.8-118.2	7.72	20	
Beryllium	113	0.47	mg/Kg wet	121		93.7	82.2-118.2	4.33	30	
Cadmium	173	0.93	mg/Kg wet	196		88.3	82.1-118.4	5.71	20	
Chromium	92.3	1.9	mg/Kg wet	103		89.6	80.8-118.4	5.35	30	
Lead	68.3	1.4	mg/Kg wet	73.2		93.3	82.8-117.3	4.47	30	
Nickel	228	1.9	mg/Kg wet	249		91.4	81.9-118.1	5.92	30	
Selenium	201	9.3	mg/Kg wet	215		93.7	78.1-121.9	5.67	30	
Thallium	77.5	4.7	mg/Kg wet	67.7		115	80.1-120.1	3.81	30	
Vanadium	165	1.9	mg/Kg wet	177		93.0	78-122	4.86	30	
Zinc	328	1.9	mg/Kg wet	360		91.1	79.7-120.3	5.66	30	

Analisa	D L	Reporting	L la 't	Spike	Source	0/050	%REC	DDD	RPD	N-
Anaiyte	Result	Limit	Units	Level	Kesult	%REC	Limits	КРD	Limit	Notes
Batch B330929 - SW-846 3050B										
LCS Dup (B330929-BSD2)				Prepared: 02	2/08/23 Analyz	zed: 02/14	4/23			
Silver	83.8	0.93	mg/Kg wet	78.5		107	78.9-121.1	4.55	30	
Matrix Spike (B330929-MS1)	Sou	rce: 23B0766	-01	Prepared: 02	2/08/23 Analyz	zed: 02/10	0/23			
Antimony	10.1	1.9	mg/Kg dry	18.6	ND	54.3	* 75-125			MS-09
Arsenic	18.1	3.7	mg/Kg dry	18.6	1.79	87.4	75-125			
Barium	25.3	1.9	mg/Kg dry	18.6	8.22	91.5	75-125			
Beryllium	17.9	0.19	mg/Kg dry	18.6	0.188	95.3	75-125			
Cadmium	16.7	0.37	mg/Kg dry	18.6	0.157	89.0	75-125			
Chromium	23.8	0.75	mg/Kg dry	18.6	6.49	93.0	75-125			
Lead	21.9	0.56	mg/Kg dry	18.6	4.54	93.3	75-125			
Nickel	20.2	0.75	mg/Kg dry	18.6	3.50	89.6	75-125			
Selenium	16.6	3.7	mg/Kg dry	18.6	ND	89.3	75-125			
Thallium	21.7	1.9	mg/Kg dry	18.6	ND	116	75-125			
Vanadium	24.0	0.75	mg/Kg dry	18.6	6.91	91.8	75-125			
Zinc	85.7	0.75	mg/Kg dry	37.3	46.9	104	75-125			
Matrix Spike (B330929-MS2)	Sou	rce: 23B0766	-01	Prepared: 02	2/08/23 Analyz	zed: 02/14	4/23			
Silver	19.6	0.37	mg/Kg dry	18.6	ND	105	75-125			
Matrix Spike Dup (B330929-MSD1)	Sou	rce: 23B0766	-01	Prepared: 02	2/08/23 Analyz	zed: 02/10	0/23			
Antimony	10.2	1.8	mg/Kg dry	18.2	ND	55.9	* 75-125	0.540	35	MS-09
Arsenic	18.8	3.6	mg/Kg dry	18.2	1.79	93.7	75-125	4.11	35	
Barium	26.1	1.8	mg/Kg dry	18.2	8.22	98.2	75-125	3.19	35	
Beryllium	18.2	0.18	mg/Kg dry	18.2	0.188	99.0	75-125	1.45	35	
Cadmium	16.7	0.36	mg/Kg dry	18.2	0.157	90.9	75-125	0.246	35	
Chromium	24.1	0.73	mg/Kg dry	18.2	6.49	96.5	75-125	0.950	35	
Lead	23.0	0.55	mg/Kg dry	18.2	4.54	101	75-125	4.66	35	
Nickel	20.4	0.73	mg/Kg dry	18.2	3.50	93.0	75-125	1.05	35	
Selenium	16.1	3.6	mg/Kg dry	18.2	ND	88.3	75-125	3.52	35	
Thallium	22.8	1.8	mg/Kg dry	18.2	ND	125	75-125	5.04	35	
Vanadium	25.0	0.73	mg/Kg dry	18.2	6.91	99.3	75-125	3.91	35	
Zinc	80.5	0.73	mg/Kg dry	36.4	46.9	92.4	75-125	6.22	35	
Matrix Spike Dup (B330929-MSD2)	Sou	rce: 23B0766	-01	Prepared: 02	2/08/23 Analyz	zed: 02/14	4/23			
Silver	18.8	0.36	mg/Kg dry	18.2	ND	103	75-125	3.81	35	
Reference (B330929-SRM1) MRL CHECK				Prepared: 02	2/08/23 Analyz	zed: 02/14	4/23			
Lead	0.484	0.50	mg/Kg wet	0.499		97.0	80-120			
Batch B331047 - SW-846 7470A/7471A										
Blank (B331047-BLK1)				Prepared &	Analyzed: 02/0	09/23				
Mercury	ND	0.025	mg/Kg wet							

Analyte Batch B331047 - SW-846 7470A/7471A	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (B331047-BS1)				Prepared &	Analyzed: 02	/09/23				
Mercury	21.8	3.7	mg/Kg wet	25.6		85.0	67.2-132.8			
LCS Dup (B331047-BSD1)	Prepared & Analyzed: 02/09/23									
Mercury	31.7	3.7	mg/Kg wet	25.6		124	67.2-132.8	37.1	* 20	R-05

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS

SW-846 8082A

Lab Sample ID: B33		0896-BS1	1	D	ate(s) Analy	zed: 02/09/2023	02/0	9/2023
In	strument ID (1): EC	CD 9		Ir	nstrument ID	(2): EC	CD 9	
G	C Column (1):	ID:	D: (mm)		iC Column (2	2):	ID:	(mm)
	ANALYTE	COL	RT	RT W	INDOW TO	CONCENTRATION	%RPD	
	Aroclor-1016	1	0.000	0.000	0.000	0.17		
		2	0.000	0.000	0.000	0.16	6.1	
	Aroclor-1260	1	1 0.000		0.000	0.17		
		2	0.000	0.000	0.000	0.16	6.1	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

SW-846 8082A

La	b Sample ID:	B330	896-BSD	1	I	Date(s) Analy	zed:	02/09/2023	02/0	9/2023
In	strument ID (1):	EC	D 9		I	nstrument ID	(2):	EC	ECD 9	
G	C Column (1):		ID:	(m	ım) (GC Column (2):		ID:	(mm)
	ANALYT	Ē	COL	RT	RT V	/INDOW	CONC	CENTRATION	%RPD	
					FROM	то				
	Aroclor-1	016	1	0.000	0.000	0.000		0.16		
			2	0.000	0.000	0.000		0.15	6.5	
	Aroclor-12	260	1	0.000	0.000	0.000		0.16		
			2	0.000	0 000	0 000		0.15	6.5	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
\$	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side
MS-09	Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated
O-32	A dilution was performed as part of the standard analytical procedure.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V-36 Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Analyte	Certifications
MADEP EPH rev 2.1 in Soil	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(a)anthracene	CT,NC,ME,NH-P
Benzo(a)pyrene	CT,NC,ME,NH-P
Benzo(b)fluoranthene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Benzo(k)fluoranthene	CT,NC,ME,NH-P
Chrysene	CT,NC,ME,NH-P
Dibenz(a,h)anthracene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
Indeno(1,2,3-cd)pyrene	CT,NC,ME,NH-P
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
MADEP EPH rev 2.1 in Water	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(a)anthracene	CT,NC,ME,NH-P
Benzo(a)pyrene	CT,NC,ME,NH-P
Benzo(b)fluoranthene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Benzo(k)fluoranthene	CT,NC,ME,NH-P
Chrysene	CT,NC,ME,NH-P
Dibenz(a,h)anthracene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
Indeno(1,2,3-cd)pyrene	CT,NC,ME,NH-P
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
SW-846 6010D in Soil	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Analyte	Certifications
SW-846 6010D in Soil	
Barium	CT NH NY ME VA NC
Bervllium	CT.NH.NY.ME.VA.NC
Cadmium	CT NH NY ME VA NC
Chromium	CT NH NY ME VA NC
Lead	CT NH NY AIHA ME VA NC
Nickel	CT.NH.NY.ME.VA.NC
Selenium	CT.NH.NY.ME.VA.NC
Silver	CT.NH.NY.ME,VA.NC
Thallium	CT.NH.NY.ME,VA.NC
Vanadium	CT.NH.NY.ME.VA.NC
Zinc	CT.NH.NY.ME,VA.NC
SW-846 6010D in Water	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,RI,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7471B in Soil	
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8082A in Soil	
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1262	NH,NY,NC,ME,VA,PA
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA
Aroclor-1268	NH,NY,NC,ME,VA,PA
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Analyte	Certifications
SW-846 8082A in Water	
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1262	NH,NY,NC,ME,VA,PA
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA
Aroclor-1268	NH,NY,NC,ME,VA,PA
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA
SW-846 8260D in Soil	
Acetone	CT,NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	NH,NY,ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	CT,NH,NY,ME
sec-Butylbenzene	CT,NH,NY,ME
tert-Butylbenzene	CT,NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	CT,NH,NY,ME
4-Chlorotoluene	CT,NH,NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NH,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NY,ME

CERTIFICATIONS

Analyte	Certifications	
SW-846 8260D in Soil		
1,1-Dichloroethane	CT,NH,NY,ME	
1,2-Dichloroethane	CT,NH,NY,ME	
1,1-Dichloroethylene	CT,NH,NY,ME	
cis-1,2-Dichloroethylene	CT,NH,NY,ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME	
1,2-Dichloropropane	CT,NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
1,4-Dioxane	NY	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NH,NY	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,3-Trichlorobenzene	NY	
1,2,4-Trichlorobenzene	NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
1,1,2-Trichloroethane	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	
SW-846 8270E in Soil		
Acenaphthene	CT,NY,NH	
Acenaphthylene	CT,NY,NH	
Acetophenone	NY,NH	
Aniline	NY,NH	
Anthracene	CT,NY,NH	
Benzo(a)anthracene	CT,NY,NH	

CERTIFICATIONS

Analyte	Certifications
SW-846 8270E in Soil	
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH
Dibenz(a,h)anthracene	CT,NY,NH
Dibenzofuran	CT,NY,NH
Di-n-butylphthalate	CT,NY,NH
1,2-Dichlorobenzene	NY,NH
1,3-Dichlorobenzene	NY,NH
1,4-Dichlorobenzene	NY,NH
3,3-Dichlorobenzidine	CT,NY,NH
2,4-Dichlorophenol	CT,NY,NH
Diethylphthalate	CT,NY,NH
2,4-Dimethylphenol	CT,NY,NH
Dimethylphthalate	CT,NY,NH
2,4-Dinitrophenol	CT,NY,NH
2,4-Dinitrotoluene	CT,NY,NH
2,6-Dinitrotoluene	CT,NY,NH
Di-n-octylphthalate	CT,NY,NH
1,2-Diphenylhydrazine/Azobenzene	NY,NH
Fluoranthene	CT,NY,NH
Fluorene	NY,NH
Hexachlorobenzene	CT,NY,NH
Hexachlorobutadiene	CT,NY,NH
Hexachloroethane	CT,NY,NH
Indeno(1,2,3-cd)pyrene	CT,NY,NH
Isophorone	CT,NY,NH
2-Methylnaphthalene	CT,NY,NH
2-Methylphenol	CT,NY,NH
3/4-Methylphenol	CT,NY,NH
Naphthalene	CT,NY,NH
Nitrobenzene	CT,NY,NH
2-Nitrophenol	CT,NY,NH
4-Nitrophenol	CT,NY,NH
Pentachlorophenol	CT,NY,NH
Phenanthrene	CT,NY,NH
Phenol	CT,NY,NH

CERTIFICATIONS

Analyte	Certifications	
SW-846 8270E in Soil		
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	
SW-846 8270E in Water		
Acenaphthene	CT,NY,NH	
Acenaphthylene	CT,NY,NH	
Acetophenone	NY	
Aniline	CT,NY	
Anthracene	CT,NY,NH	
Benzo(a)anthracene	CT,NY,NH	
Benzo(a)pyrene	CT,NY,NH	
Benzo(b)fluoranthene	CT,NY,NH	
Benzo(g,h,i)perylene	CT,NY,NH	
Benzo(k)fluoranthene	CT,NY,NH	
Bis(2-chloroethoxy)methane	CT,NY,NH	
Bis(2-chloroethyl)ether	CT,NY,NH	
Bis(2-chloroisopropyl)ether	CT,NY,NH	
Bis(2-Ethylhexyl)phthalate	CT,NY,NH	
4-Bromophenylphenylether	CT,NY,NH	
Butylbenzylphthalate	CT,NY,NH	
4-Chloroaniline	CT,NY,NH	
2-Chloronaphthalene	CT,NY,NH	
2-Chlorophenol	CT,NY,NH	
Chrysene	CT,NY,NH	
Dibenz(a,h)anthracene	CT,NY,NH	
Dibenzofuran	CT,NY,NH	
Di-n-butylphthalate	CT,NY,NH	
1,2-Dichlorobenzene	CT,NY,NH	
1,3-Dichlorobenzene	CT,NY,NH	
1,4-Dichlorobenzene	CT,NY,NH	
3,3-Dichlorobenzidine	CT,NY,NH	
2,4-Dichlorophenol	CT,NY,NH	
Diethylphthalate	CT,NY,NH	
2,4-Dimethylphenol	CT,NY,NH	
Dimethylphthalate	CT,NY,NH	
2,4-Dinitrophenol	CT,NY,NH	
2,4-Dinitrotoluene	СТ, NY, NH	
2,6-Dinitrotoluene	СТ, NY, NH	
Di-n-octylphthalate	СТ, NY, NH	
1,2-Diphenylhydrazine/Azobenzene	NY	
Fluoranthene	CT,NY,NH	
Fluorene	NY,NH	
Hexachlorobenzene	C1,NY,NH	
Hexachlorobutadiene	C1,NY,NH	
Hexachloroethane	C1.NY.NH	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

(

Certified Analyse	s included	in this	Report
-------------------	------------	---------	--------

Analyte	Certifications	
SW-846 8270E in Water		
Indeno(1,2,3-cd)pyrene	CT,NY,NH	
Isophorone	CT,NY,NH	
2-Methylnaphthalene	CT,NY,NH	
2-Methylphenol	CT,NY,NH	
3/4-Methylphenol	CT,NY,NH	
Naphthalene	CT,NY,NH	
Nitrobenzene	CT,NY,NH	
2-Nitrophenol	CT,NY,NH	
4-Nitrophenol	CT,NY,NH	
Pentachlorophenol	CT,NY,NH	
Phenanthrene	CT,NY,NH	
Phenol	CT,NY,NH	
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
СТ	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
RI	Rhode Island Department of Health	LAO00373	12/30/2023
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2023

35 BO766

	-seke 	Page s of s	Preservation Code	Courier Use Only	Total Number Of:		VIALS	GLASS	PLASTIC	BACJERIA			Glassware findge?	Glassware in freezer? Y / N	Brond Providence	Preparkayeu Cover V 1 N	responsible for missing samples		¹ Matrix Codes: GW = Ground Water	WW = Waste Water DW = Drinking Water	S = Soll	SI = Sludge SOL = Solid	0 = Other (please define)	² Preservation Codes: 1 = Iced	H HCC	M = Methanol	ndicate N = Nitric Acid		lean, U - Contrarto Actual (ean), U - Contrarto Actual (ean), U - Contrarto Actual (ean), Ean (ean)		A = Sodium Hydroxide	T = Sodium Thiosialfate	ram	LC 0 = Other (please define)		mation on the Chain of Custody. The curate and is used to determine what	the laboratory's responsibility. Pace
# 381 Rev 5_07/13/2021		ANALYSIS REQUESTED			2		04	ວບ			<u> </u>	52 52 50 70	D01 D01 D01														Jired Prease use the following codes to it possible sample concentration within	code column above:	ured H - High; M - Medium; L - Low; C - Cl Unknown		8451 ST 1241 1 20 21 1 20	Other	TA Chromatog	AIHA-LAP,I		is not responsible for any omitted infor ocument that must be complete and ac	perform. Any missing information is not
Doc	39 Spruce Street Fast Lonemeadow MA 01028	issolved Metalk Samples	Field Filtered	Lab to Filter	rertoprostytate samples	Freid Filtered	Lab to Filter						SLASS PLASTIC BACTERIA ENCORE	×	×							×				al Requirements	MA MCP Requ	MUP LEFTINGATION FORM REG	RCP Certification Form Reg	MA State DW Racin			MWRA	School Brand	Loon	Disclaimer: Pace Analytical Chain of Custody is a legal d	analyses the laboratory will the aboratory will the analysis of the second seco
www.pacelabs.com	CHAIN OF CUSTODY RECORD	Urnaround Time D	10-Day	Due Date: O			4-Day O	EXCEL VI		uired: SOXHLE	acondred have		RAB ¹ Matrix Conc Code VIALS C	د د	- S	8 3 3	5		S S	S	~			Jdu		Spec	×.				PWSID #		Municipality	21 J Brownfield	and the second state of the se		
http://w		Requested T	quests 7-Day	000 PFAS 10-Day (std)			ALU (7-Day (Format: PDF 🗙	Other:	CLP Like Data Pkg Requ	Email To: DMQK	Fax To #: WILY EN	Beginning Ending Date/Time Bate/Time COMP/GF	2/2/23 1230 grat	2/2/23 1250 grai	2/2/23 10:15 grau	2/2/23 10:15 grac	2/2/23 830 9000	2/2/23 1025 Grap	2/2/23 1100 grado	2/2/23 1140 9 rab	2/2/23 400 grab		Client Comments: MCP MLTMC	N RUS-1	Detection Limit Regulrements					Other	Project Entity	Government	City			
	\\ [*] Phone: 413-525-2332	Fax: 413-525-6405	Access CUC's and Support Re	PULSITY WITCH		CANA DIL Dead The	ULL OWN THE KULL IVI	<u></u>	Malsa			HUNCHONG	Client Sample ID / Description	TD-2(2-4)	TP - 3(0 - 2)	TP-5(0-2)	TP-5(6-3)	TP-6(0-2)	TP-8(2-4)	TP-9(0-2)	TP-10(6-8)	TP-11(0-2)		V 246/193 1520	A dreg (S)	2 Staty Time:	7/ Date/Time/-N/	VIDINS 1112	/ / Date/Time:	Date/Time:		Date/Time:	Date/Time.	Date: I HHC.			
5	Pace Analytica	•	-	Address: Q() D () (1,0 ()	Phone: -701 - 7112 - 15		Project Location: SCI INCL D	Project Number: 22/29	Project Manager: PNUQN	Pace Quote Name/Number:	Invoice Recipient:	Sampled By: (MMUNS	Pace Work Order#		Z	3	8	S.	9	V	Ð	5		Reunquished by: (signature)	Receiverby: mignature)	Retinquisted by: (signatured	Received by (signature) 7,7	CARIN LY	Retriquished by: (signature)	Received by: (signature)		Relinquished by: (signature)	Received by: (signature)		Lab Comments:		

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405 www.pacelabs.com ENV-FRM-ELON-0001 v02__Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

·**e**· PEOPLE ADVANCING SCIENCE

¢

		\boldsymbol{c}						True	i
Client_HOrsley NI	tten	6-10 VP	?						
Project Sand Pit R	d, tru	rd '		<u>Receive</u>	d on Ice			<u> </u>	
MCP/RCP Required MA	MCP	-		Receive	d in Cooler			Ø	
Deliverable Package Requiremen	nt RCS	5-1		Custody	Seal: DAT	Έ T	IME		
Location Sand Pit	rd Tr	VIO			inquiched			M	
PWSID# (When Applicable)	A			<u>LUC NER</u>	inquisneo				
Arrival Method COVCI (1		<u></u>	COC/San	nples Labe	ls Agree			
Received By / Date / Time GF	2 216	123	1715	<u>All Samp</u>	les in Goo	d Condition		<u>u</u>	
Back Shoot By / Date / Time	- 717	h3 1	836	Samples	Received v	vithin Holdi	ng Time	M,	
Tomporture Mathed	in	<u>s</u>		<u>is there e</u>	enough Vol	ume		Ø,	[
		<u>-".()</u>		Proper M	ledia/Cont	ainer Used]
	rature	<u> </u>		Enditting (Canada D			F	f
Rush Samples: Yes / No	NO	t my		oparrang :	samples M	equired sea			
Short Hold: Yes / No	Not	ify	•	MS/MSD					<u>L</u> P
Notes regarding Samples/	COC outs	de of SOP		Trip Blan	<u>s</u>	، مى تىغىد يىغىنىد دىلىرىيىد «ئى ئىلى ئىلى ئىلى ئىلى ئىلى ئىلى ئىلى ئى	<u> </u>		Ľ
				ab to Filt	iers			U /	
		·····		OC Legib)le	an a		3	L.
		الاردة والمسالة مقاربة والمستحد المراجع						/	
		fland an	T (COC Inch	udeø l: (Ch	eck all inclu	ided)		- 12
			=	COC Inch	uded: (Chi	eck all Inch alusis 171	ided)		् ग
			(OC Inch Client [uded: (Chi An	alysis	ided) Samplei	Name	E
				Client	uded: (Chr クロロン イロロロ ロロ ロロ	eck all Inclu alysis [2] s [2]	ided) Sampler Collectio	Name on Date/Tim	e E
			() F	Client	uded: (Chi	eck all Inchi alysis D s D	ided) Sampler Collectic	Name on Date/Tim	е С Г
				COC Inch Client I Project I	udegt: (Chu An Z ID: ID:	eck all linck alysis s er PH // /	nded) Sampler Collectic 7 [Name on Date/Tim	е С
Container (Circle when applicable)	UnP H			COC Inch Client I Project I All Samp NaOH	Ideo: (Chi An ID: ID: Ides Propu	eck all linck alysis s er PH /// NaS2O3	rded) Sampler Collectio 7 [Other Pres	Name on Date/Tim ervative	e C
Container (Circle when applicable) 1L Amber Plastic	UnP H		(C F F A H2SO4	COC Inch Client I Project I NII Samp NaOH	uded: (Chi 7 An 7 ID: oles Propi	eck all linck alysis s er PH /// NaS2O3	ided) Sampler Collectio 7 [Other Pres	Name on Date/Tim	e C C
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 ml Amber Plastic	UnP H		C F F A H2SO4	COC Inch Client I Project I NI Samp NaOH	An An ID: Nes Prope	eck all linck alysis s er PH /// NaS2O3	nded) Sampler Collectic 7 [Other Pres	Name on Date/Tim	e C
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic	UnP H		(C F F H2SO4	COC Inclu Client I Project I All Samp	vdegt: (Chr 7 An 7 ID: ID: Ides Propu	eck all lincki alysis D s D er PH /// NaS2O3	ided) Sampler Collectio 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic 0ther Amber Clear Plastic 16oz Amber Clear	UnP H	CI HNO3	C F F A	COC Inclu Client I Project I NII Samp	An An ID: Nes Prope	eck all linck alysis s P PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	e C
Container (Circle when applicable)1LAmberPlastic500 mLAmberPlastic250 mLAmberPlastic250 mLAmberPlastic0therAmberClear16ozAmberClear8ozAmberClear	UnP H		(C F F 	COC Inch Client I Project I NI Samp	ideo: (Chi An ID: ID: Ides Propi	eck all linck alysis s P PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	e C
Container (Circle when applicable)1LAmberPlastic500 mLAmberPlastic250 mLAmberPlastic250 mLAmberPlastic0therAmberClear16ozAmberClear8ozAmberClear4ozAmberClear	UnP H		F F H2SO4	COC Inclu Client I Project I All Samp	Idea: (Chi An ID: Ides Propu	eck all linck alysis D s D er PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable)1LAmberPlastic500 mLAmberPlastic250 mLAmberPlastic250 mLAmberPlastic0therAmberClear16ozAmberClear8ozAmberClear4ozAmberClear2ozAmberClear	UnP H	CI HNO3	H2SO4	COC Inch Client I Project I NI Samp	An An ID: Nes Prope	eck all linck alysis s P PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	e C
Container (Circle when applicable)1LAmberPlastic500 mLAmberPlastic250 mLAmberPlastic250 mLAmberPlastic0therAmberClear16ozAmberClear8ozAmberClear4ozAmberClear2ozAmberClear2ozAmberClearCol/BacteriaClear	UnP H		H2SO4	COC Inch Client I Project I NI Samp	Idea: (Chi An ID: ID: Ides Propi	eck all linck alysis s P PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable)1LAmberPlastic500 mLAmberPlastic250 mLAmberPlastic250 mLAmberPlastic0therAmberClear16ozAmberClear8ozAmberClear4ozAmberClear4ozAmberClear2ozAmberClear2ozAmberClearFlashpointClear	UnP H		G F F 	COC Inclu Client I Project I All Samp	Idea: (Chi An ID: Ides Propu	eck all linck alysis D s D er PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic 0ther Amber Clear 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear 2oz Amber Clear Flashpoint Plastic Bag Col	UnP H		H2SO4	COC Inch Client I Project I NI Samp	Ided: (Chi	eck all linck alysis s P PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic 250 mL Amber Plastic 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear 2oz Amber Clear Flashpoint Plastic Bag SOC Kit	UnP H		H2SO4	COC Inch Client I Project I NI Samp	Idea: (Chi An ID: ID: Ides Propie	eck all linck alysis s P NaS2O3	Ided) Sampler Collection Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber 500 mL Amber 250 mL Amber 250 mL Amber 250 mL Amber Plastic 0ther Amber Plastic 16oz Amber Amber Clear 8oz Amber 4oz Amber 2oz Amber Clear Clear 2oz Amber Flashpoint Plastic Bag SOC Klt Perchlorate	UnP H		H2SO4	COC Inch Client I Project I All Samp	Idea: (Chi An ID: Ides Propie	eck all linck alysis D s D er PH /// NaS2O3	Ided) Sampler Collection 7 [Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic 250 mL Amber Plastic 0ther Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear 2oz Amber Clear Flashpoint Plastic Bag SOC Kit Perchlorate Encore Encore	UnP H		H2SO4	COC Inch Client I Project I NI Samp	Ided: (Chi An ID: ID: Ides Propie	eck all linck alysis 2 s 2 er PH /// NaS2O3	Ided) Sampler Collectio Other Pres	Name on Date/Tim	
Container (Circle when applicable) 1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic 250 mL Amber Plastic 0ther Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear 8oz Amber Clear 2oz Amber Clear 500 Klt Perchlorate Encore	UnP H		H2SO4	COC Inch Client I Project I NI Samp	Idea: (Chi An ID: ID: Ides Propie	eck all linch alysis 2 s 2 er PH /// NaS2O3	Ided) Sampler Collection Other Pres	Name on Date/Tim	

		MADE	P MCP Analytical M	lethod Report Cert	ification Form					
Labc	ratory Name	: Pace New En	igland		Project #: 23B0	0766				
Proje	ect Location:	Sand Pit Rd, 1	Fruro, MA		RTN:					
This F	This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]									
23E	30766-01 thru	ı 23B0766-09								
Matri	Matrices: Soil									
C/	AM Protoco	I (check all that I	below)							
8260	VOC	7470/7471 Hg	MassDEP VPH	8082 PCB	9014 Total	6860				
CAM	M II A (X) CAM IIIB (X) (GC/PID/FID) CAM V A (X) Cyanide/PA CAM IV A ()				Cyanide/PAC CAM VI A ()	Perchlo CAM V	orate ′III B()			
8270 CAM	SVOC II B (X)	7010 Metals CAM III C ()	MassDEP VPH (GC/MS) CAM IV C()	8081 Pesticides CAM V B()	MassD CAM IX	EP APH 〈 A ()				
6010 CAM	Metals III A (X)	6020 Metals CAM III D()	MassDEP EPH CAM IV B (X)	8151 Herbicides CAM V C ()	TO-15 VOC CAM IX B ()					
	A	ffirmative response	to Questions A throug	ghF is required for "P	Presumptive Certainty"	status				
A	Were all samp properly prese method holdin	🛛 Yes	□No ¹							
В	🛛 Yes	□No ¹								
C Were all required corrective actions and analytical response actions specified in the selected CAM										
D	Does the labor Quality Assura Data?	atory report comply wince and Quality Contro	th all the reporting require of Guidlines for the Acquis	ements specified in CAM sition and Reporting of Ar	VII A, nalytical	🛛 Yes	□No ¹			
Ea	VPH, EPH, an modification(s)	d APH Methods only: V	Vas each method conduc	ted without significant		🗹 Yes	No¹			
Eb	APH and TO-1	5 Methods only: Was t	the complete analyte list r	eported for each method	?	□ Yes				
F	Were all applic	able CAM protocol QC	and performance standa	ard non-conformances ide	entified and	⊡ Yes				
	A response	e to questions G, H	and I below is require	d for "Presumptive C	ertainty" status					
G	Were the repo protocol(s)?	rting limits at or below	all CAM reporting limits s	pecified in the selected C	ХАМ	☑ Yes	□No ¹			
<u>Data</u> and	<u>User Note:</u> D representative	ata that achieve "Pr eness requirements	esumptive Certainty" described in 310 CMI	status may not neces R 40. 1056 (2)(k) and V	ssarily meet the data us NSC-07-350.	sability				
Н	Were all QC p	erfomance standards s	pecified in the CAM proto	ocol(s) achieved?		□ _{Yes}	⊿ _{No¹}			
I	Were results re	eported for the complet	te analyte list specified in	the selected CAM protoc	col(s)?	🗹 Yes	□No¹			
¹ <i>A</i> //	Negative resp	onses must be addre	essed in an attached Er	nvironmental Laborator	ry case narrative.					
l, th tho: of n	e undersigne se responsibl ny knowledge	d, attest under the p e for obtaining the i and belief, accurate	pains and penalties of nformation, the mater e and complete.	perjury that, based u ial contained in this a	pon my personal inqui nalytical report is, to th	ry of he best				
Sig	Signature: Husa Worthungton Position: Technical Representative									
Prir	Printed Name: Date: 02/28/23									

February 22, 2023

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Sand Pit Rd., Truro, MA. Client Job Number: Project Number: 22129 Laboratory Work Order Number: 23B1132

Enclosed are results of analyses for samples as received by the laboratory on February 9, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

and the

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
23B1132-01	6
Sample Preparation Information	9
QC Data	10
Petroleum Hydrocarbons Analyses - EPH	10
B331184	10
Metals Analyses (Total)	12
B331335	12
B331454	13
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	14
B331289	14
Flag/Qualifier Summary	15
Certifications	16
Chain of Custody/Sample Receipt	18

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

REPORT DATE: 2/22/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 22129

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23B1132

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Sand Pit Rd., Truro, MA.

 FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TP-5 (6-8)	23B1132-01	Soil		MADEP EPH rev 2.1	
				SM 2540G	
				SW-846 6010D	
				SW-846 7471B	

CASE NARRATIVE SUMMARY

SM 2540G

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Qualifications: H-03 Sample received after recommended holding time was exceeded. Analyte & Samples(s) Qualified: % Solids 23B1132-01[TP-5 (6-8)] SW-846 6010D Qualifications: L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified: Arsenic B331335-BS1 Lead B331335-BS4 Silver B331335-BS1 M-10 The reporting limit verification for the AIHA lead program is outside of control limits for this element. Any reported result at or near the detection limit may be biased on the high side. Analyte & Samples(s) Qualified: Lead 23B1132-01[TP-5 (6-8)], B331335-SRM1

SW-846 7471B

Qualifications:

MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria. Analyte & Samples(s) Qualified:

Mercury

B331454-MS1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Work Order: 23B1132

Project Location: Sand Pit Rd., Truro, MA. Date Received: 2/9/2023 Field Sample #: TP-5 (6-8) Sample ID: 23B1132-01 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

	Petroleum Hydrocarbons Analyses - EPH												
							Date	Date/Time					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst				
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Benzo(g,h,i)perylene	0.17	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	2/10/23	2/15/23 10:49	GJB				
Surrogates		% Recovery	Recovery Limits		Flag/Qual								
Chlorooctadecane (COD)		66.9	40-140					2/15/23 10:49					
o-Terphenyl (OTP)		73.8	40-140					2/15/23 10:49					
2-Bromonaphthalene		74.8	40-140					2/15/23 10:49					
2-Fluorobiphenyl		79.2	40-140					2/15/23 10:49					

Work Order: 23B1132

Project Location: Sand Pit Rd., Truro, MA. Date Received: 2/9/2023 Field Sample #: TP-5 (6-8) Sample ID: 23B1132-01 Sample Matrix: Soil

Sampled: 2/2/2023 10:15

Sample Description:

Metals Analyses (Total)											
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst		
Antimony	ND	1.8	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Arsenic	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Barium	9.8	1.8	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Beryllium	0.22	0.18	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Cadmium	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Chromium	6.1	0.72	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Lead	6.4	0.54	mg/Kg dry	1	M-10	SW-846 6010D	2/13/23	2/16/23 18:31	HNN		
Mercury	ND	0.027	mg/Kg dry	1		SW-846 7471B	2/14/23	2/15/23 15:19	AAJ		
Nickel	2.8	0.72	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Selenium	ND	3.6	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Silver	ND	0.36	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Thallium	ND	1.8	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Vanadium	8.9	0.72	mg/Kg dry	1		SW-846 6010D	2/13/23	2/15/23 16:24	ATP		
Zinc	9.7	0.72	mg/Kg dry	1		SW-846 6010D	2/13/23	2/16/23 18:31	HNN		

91.0

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Sand Pit Rd., Truro, MA. Sample Description: Work Order: 23B1132 Date Received: 2/9/2023 Field Sample #: TP-5 (6-8) Sampled: 2/2/2023 10:15 Sample ID: 23B1132-01 Sample Matrix: Soil Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) Date Date/Time Prepared Analyte Results RL Units Dilution Flag/Qual Method Analyzed Analyst

1

H-03

SM 2540G

2/11/23

2/11/23 7:44

WDC

% Wt

Sample Extraction Data

Prep Method: SW-846 3546 Analytical Method: MADEP EPH rev 2.1											
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date							
23B1132-01 [TP-5 (6-8)]	B331184	20.0	2.00	02/10/23							
Prep Method: % Solids Analytical Method	l: SM 2540G										
Lab Number [Field ID]	Batch			Date							
23B1132-01 [TP-5 (6-8)]	B331289			02/11/23							
Prep Method: SW-846 3050B Analytical M	lethod: SW-846 6010D										
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date							
23B1132-01 [TP-5 (6-8)]	B331335	1.52	50.0	02/13/23							
Prep Method: SW-846 7470A/7471A Analy	ytical Method: SW-846 7471B										
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date							
23B1132-01 [TP-5 (6-8)]	B331454	0.604	50.0	02/14/23							

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331184 - SW-846 3546										
Blank (B331184-BLK1)				Prepared: 02	2/10/23 Analy	/zed: 02/14/2	3			
C9-C18 Aliphatics	ND	10	mg/Kg wet	-						
C19-C36 Aliphatics	ND	10	mg/Kg wet							
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg wet							
C11-C22 Aromatics	ND	10	mg/Kg wet							
Acenaphthene	ND	0.10	mg/Kg wet							
Acenaphthylene	ND	0.10	mg/Kg wet							
Anthracene	ND	0.10	mg/Kg wet							
Benzo(a)anthracene	ND	0.10	mg/Kg wet							
Benzo(a)pyrene	ND	0.10	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.10	mg/Kg wet							
Benzo(g,h,i)perylene	ND	0.10	mg/Kg wet							
Benzo(k)fluoranthene	ND	0.10	mg/Kg wet							
Chrysene	ND	0.10	mg/Kg wet							
Dibenz(a,h)anthracene	ND	0.10	mg/Kg wet							
Fluoranthene	ND	0.10	mg/Kg wet							
Fluorene	ND	0.10	mg/Kg wet							
Indeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg wet							
2-Methylnaphthalene	ND	0.10	mg/Kg wet							
Naphthalene	ND	0.10	mg/Kg wet							
Phenanthrene	ND	0.10	mg/Kg wet							
Pyrene	ND	0.10	mg/Kg wet							
Naphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
2-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
Surrogate: Chlorooctadecane (COD)	3.40		mg/Kg wet	5.00		68.1	40-140			
Surrogate: o-Terphenyl (OTP)	4.30		mg/Kg wet	5.00		86.0	40-140			
Surrogate: 2-Bromonaphthalene	4.77		mg/Kg wet	5.00		95.4	40-140			
Surrogate: 2-Fluorobiphenyl	4.76		mg/Kg wet	5.00		95.2	40-140			
LCS (B331184-BS1)				Prepared: 02	2/10/23 Analy	/zed: 02/14/2	.3			
C9-C18 Aliphatics	20.6	10	mg/Kg wet	30.0		68.7	40-140			
C19-C36 Aliphatics	34.2	10	mg/Kg wet	40.0		85.5	40-140			
Unadjusted C11-C22 Aromatics	88.4	10	mg/Kg wet	85.0		104	40-140			
Acenaphthene	4.28	0.10	mg/Kg wet	5.00		85.6	40-140			
Acenaphthylene	3.86	0.10	mg/Kg wet	5.00		77.3	40-140			
Anthracene	4.68	0.10	mg/Kg wet	5.00		93.6	40-140			
Benzo(a)anthracene	5.42	0.10	mg/Kg wet	5.00		108	40-140			
Benzo(a)pyrene	5.59	0.10	mg/Kg wet	5.00		112	40-140			
Benzo(b)fluoranthene	5.56	0.10	mg/Kg wet	5.00		111	40-140			
Benzo(g,h,i)perylene	5.51	0.10	mg/Kg wet	5.00		110	40-140			
Benzo(k)fluoranthene	4.85	0.10	mg/Kg wet	5.00		97.0	40-140			
Chrysene	5.23	0.10	mg/Kg wet	5.00		105	40-140			
Dibenz(a,h)anthracene	5.51	0.10	mg/Kg wet	5.00		110	40-140			
Fluoranthene	4.99	0.10	mg/Kg wet	5.00		99.8	40-140			
Fluorene	4.53	0.10	mg/Kg wet	5.00		90.7	40-140			
Indeno(1,2,3-cd)pyrene	5.76	0.10	mg/Kg wet	5.00		115	40-140			
2-Metnyinaphthalene	3.80	0.10	mg/Kg wet	5.00		76.1	40-140			
Naphinaiene	3.13	0.10	mg/Kg wet	5.00		62.5	40-140			
Priena	4.92	0.10	mg/Kg wet	5.00		98.4	40-140			
r yrene Nanhthalana alinhatia fraction	5.14	0.10	mg/Kg wet	5.00		103	40-140			
2 Methylnanhthalene alinhatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
	ND	0.10	mg/⊾g wet	5.00			0-5			
Surrogate: Chlorooctadecane (COD)	3.29		mg/Kg wet	5.00		65.8	40-140			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331184 - SW-846 3546										
LCS (B331184-BS1)]	Prepared: 02	2/10/23 Anal	yzed: 02/14/2	23			
Surrogate: o-Terphenyl (OTP)	4.59		mg/Kg wet	5.00		91.9	40-140			
Surrogate: 2-Bromonaphthalene	4.79		mg/Kg wet	5.00		95.7	40-140			
Surrogate: 2-Fluorobiphenyl	4.78		mg/Kg wet	5.00		95.6	40-140			
LCS Dup (B331184-BSD1)]	Prepared: 02	2/10/23 Anal	yzed: 02/14/2	23			
C9-C18 Aliphatics	21.8	10	mg/Kg wet	30.0		72.5	40-140	5.40	25	
C19-C36 Aliphatics	35.2	10	mg/Kg wet	40.0		87.9	40-140	2.84	25	
Unadjusted C11-C22 Aromatics	75.0	10	mg/Kg wet	85.0		88.3	40-140	16.4	25	
Acenaphthene	3.55	0.10	mg/Kg wet	5.00		70.9	40-140	18.8	25	
Acenaphthylene	3.21	0.10	mg/Kg wet	5.00		64.3	40-140	18.4	25	
Anthracene	3.90	0.10	mg/Kg wet	5.00		78.0	40-140	18.2	25	
Benzo(a)anthracene	4.55	0.10	mg/Kg wet	5.00		91.0	40-140	17.5	25	
Benzo(a)pyrene	4.68	0.10	mg/Kg wet	5.00		93.6	40-140	17.7	25	
Benzo(b)fluoranthene	4.66	0.10	mg/Kg wet	5.00		93.2	40-140	17.6	25	
Benzo(g,h,i)perylene	4.66	0.10	mg/Kg wet	5.00		93.2	40-140	16.8	25	
Benzo(k)fluoranthene	4.07	0.10	mg/Kg wet	5.00		81.3	40-140	17.5	25	
Chrysene	4.40	0.10	mg/Kg wet	5.00		88.0	40-140	17.3	25	
Dibenz(a,h)anthracene	4.63	0.10	mg/Kg wet	5.00		92.6	40-140	17.4	25	
Fluoranthene	4.18	0.10	mg/Kg wet	5.00		83.7	40-140	17.6	25	
Fluorene	3.74	0.10	mg/Kg wet	5.00		74.8	40-140	19.2	25	
Indeno(1,2,3-cd)pyrene	4.83	0.10	mg/Kg wet	5.00		96.6	40-140	17.7	25	
2-Methylnaphthalene	3.33	0.10	mg/Kg wet	5.00		66.6	40-140	13.2	25	
Naphthalene	3.05	0.10	mg/Kg wet	5.00		61.0	40-140	2.44	25	
Phenanthrene	4.08	0.10	mg/Kg wet	5.00		81.6	40-140	18.6	25	
Pyrene	4.29	0.10	mg/Kg wet	5.00		85.9	40-140	17.9	25	
Naphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
2-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
Surrogate: Chlorooctadecane (COD)	3.33		mg/Kg wet	5.00		66.5	40-140			
Surrogate: o-Terphenyl (OTP)	3.75		mg/Kg wet	5.00		75.0	40-140			
Surrogate: 2-Bromonaphthalene	4.22		mg/Kg wet	5.00		84.4	40-140			
Surrogate: 2-Fluorobiphenyl	4.20		mg/Kg wet	5.00		84.1	40-140			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch B331335 - SW-846 3050B												
Blank (B331335-BLK1)				Prepared: 02	2/13/23 Analy	zed: 02/15	5/23					
Antimony	ND	1.6	mg/Kg wet									
Arsenic	ND	3.2	mg/Kg wet									
Barium	ND	1.6	mg/Kg wet									
Beryllium	ND	0.16	mg/Kg wet									
Cadmium	ND	0.32	mg/Kg wet									
Chromium	ND	0.64	mg/Kg wet									
Nickel	ND	0.64	mg/Kg wet									
Selenium	ND	3.2	mg/Kg wet									
Silver	ND	0.32	mg/Kg wet									
Thallium	ND	1.6	mg/Kg wet									
Vanadium	ND	0.64	mg/Kg wet									
Blank (B331335-BLK2)				Prepared: 02	2/13/23 Analy	zed: 02/16	5/23					
Lead	ND	0.48	mg/Kg wet									
Zinc	ND	0.64	mg/Kg wet									
LCS (B331335-BS1)	Prepared: 02/13/23 Analyzed: 02/15/23											
Antimony	89.4	5.0	mg/Kg wet	111		80.5	0-205.4					
Arsenic	86.7	9.9	mg/Kg wet	112		77.4	* 82-118.8			L-07		
Barium	140	5.0	mg/Kg wet	154		90.7	81.8-118.2					
Beryllium	124	0.50	mg/Kg wet	121		103	82.2-118.2					
Cadmium	189	0.99	mg/Kg wet	196		96.3	82.1-118.4					
Chromium	92.6	2.0	mg/Kg wet	103		89.9	80.8-118.4					
Nickel	235	2.0	mg/Kg wet	249		94.2	81.9-118.1					
Selenium	188	9.9	mg/Kg wet	215		87.4	78.1-121.9					
Silver	60.8	0.99	mg/Kg wet	78.5		77.4	* 78.9-121.1			L-07		
Thallium	66.6	5.0	mg/Kg wet	67.7		98.3	80.1-120.1					
Vanadium	156	2.0	mg/Kg wet	177		88.2	78-122					
LCS (B331335-BS2)				Prepared: 02	2/13/23 Analy	zed: 02/16	5/23					
Zinc	304	2.0	mg/Kg wet	360		84.6	79.7-120.3					
LCS (B331335-BS4)				Prepared: 02	2/13/23 Analy	zed: 02/19	0/23					
Lead	55.5	1.5	mg/Kg wet	73.2		75.8	* 82.8-117.3			L-07		
LCS Dup (B331335-BSD1)				Prepared: 02	2/13/23 Analy	zed: 02/15	5/23					
Antimony	102	5.0	mg/Kg wet	111		92.2	0-205.4	13.5	30			
Arsenic	97.9	9.9	mg/Kg wet	112		87.4	82-118.8	12.2	30			
Barium	156	5.0	mg/Kg wet	154		101	81.8-118.2	10.8	20			
Beryllium	141	0.50	mg/Kg wet	121		117	82.2-118.2	12.8	30			
Cadmium	206	0.99	mg/Kg wet	196		105	82.1-118.4	8.69	20			
Chromium	108	2.0	mg/Kg wet	103		105	80.8-118.4	15.1	30			
Nickel	266	2.0	mg/Kg wet	249		107	81.9-118.1	12.7	30			
Selenium	208	9.9	mg/Kg wet	215		96.7	78.1-121.9	10.1	30			
Silver	71.3	0.99	mg/Kg wet	78.5		90.8	78.9-121.1	15.9	30			
Thallium	72.6	5.0	mg/Kg wet	67.7		107	80.1-120.1	8.67	30			
Vanadium	177	2.0	mg/Kg wet	177		100	78-122	12.8	30			

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B331335 - SW-846 3050B											
LCS Dup (B331335-BSD2)				Prepared: 02	2/13/23 Anal	yzed: 02/16	5/23				
Zinc	339	2.0	mg/Kg wet	360		94.3	79.7-120.3	10.8	30		
LCS Dup (B331335-BSD4)	Prepared: 02/13/23 Analyzed: 02/16/23										
Lead	65.6	1.5	mg/Kg wet	73.2		89.7	82.8-117.3	16.7	30		
Reference (B331335-SRM1) MRL CHECK	Prepared: 02/13/23 Analyzed: 02/19/23										
Lead	0.645	0.50	mg/Kg wet	0.497		130	* 80-120			M-10	
Batch B331454 - SW-846 7470A/7471A											
Blank (B331454-BLK1)				Prepared: 02	2/14/23 Anal	yzed: 02/15	5/23				
Mercury	ND	0.024	mg/Kg wet								
LCS (B331454-BS1)				Prepared: 02	2/14/23 Anal	yzed: 02/15	5/23				
Mercury	24.9	3.7	mg/Kg wet	25.6		97.3	67.2-132.8				
LCS Dup (B331454-BSD1)				Prepared: 02	2/14/23 Anal	yzed: 02/15	5/23				
Mercury	27.3	3.7	mg/Kg wet	25.6		107	67.2-132.8	9.15	20		
Matrix Spike (B331454-MS1)	Sou	rce: 23B1132	-01	Prepared: 02	2/14/23 Anal	yzed: 02/15	5/23				
Mercury	0.274	0.027	mg/Kg dry	0.366	NE	74.9	* 80-120			MS-22	
Matrix Spike Dup (B331454-MSD1)	Sou	rce: 23B1132	-01	Prepared: 02	2/14/23 Anal	yzed: 02/15	5/23				
Mercury	0.299	0.027	mg/Kg dry	0.363	NE	82.4	80-120	8.72	20		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B331289 - % Solids										
Duplicate (B331289-DUP3)	Sou	rce: 23B1132-0)1	Prepared & A	Analyzed: 02	/11/23				
% Solids	92.1		% Wt		91.0			1.15	10	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits, PPD between the two LEP/LCS results is within method energified orienteries.
M-10	The reporting limit verification for the AIHA lead program is outside of control limits for this element. Any reported result at or near the detection limit may be biased on the high side.

MS-22 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
MADEP EPH rev 2.1 in Soil	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(a)anthracene	CT,NC,ME,NH-P
Benzo(a)pyrene	CT,NC,ME,NH-P
Benzo(b)fluoranthene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Benzo(k)fluoranthene	CT,NC,ME,NH-P
Chrysene	CT,NC,ME,NH-P
Dibenz(a,h)anthracene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
Indeno(1,2,3-cd)pyrene	CT,NC,ME,NH-P
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
MADEP EPH rev 2.1 in Water	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(a)anthracene	CT,NC,ME,NH-P
Benzo(a)pyrene	CT,NC,ME,NH-P
Benzo(b)fluoranthene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Benzo(k)fluoranthene	CT,NC,ME,NH-P
Chrysene	CT,NC,ME,NH-P
Dibenz(a,h)anthracene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
Indeno(1,2,3-cd)pyrene	CT,NC,ME,NH-P
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
SW-846 6010D in Soil	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 6010D in Soil		
Barium	C1,NH,NY,ME,VA,NC	
Beryllium	CT,NH,NY,ME,VA,NC	
Cadmium	CT,NH,NY,ME,VA,NC	
Chromium	CT,NH,NY,ME,VA,NC	
Lead	CT,NH,NY,AIHA,ME,VA,NC	
Nickel	CT,NH,NY,ME,VA,NC	
Selenium	CT,NH,NY,ME,VA,NC	
Silver	CT,NH,NY,ME,VA,NC	
Thallium	CT,NH,NY,ME,VA,NC	
Vanadium	CT,NH,NY,ME,VA,NC	
Zinc	CT,NH,NY,ME,VA,NC	
SW-846 6010D in Water		
Antimony	CT,NH,NY,ME,VA,NC	
Arsenic	CT,NH,NY,ME,VA,RI,NC	
Barium	CT,NH,NY,ME,VA,NC	
Beryllium	CT,NH,NY,ME,VA,NC	
Cadmium	CT,NH,NY,ME,VA,NC	
Chromium	CT,NH,NY,ME,VA,NC	
Lead	CT,NH,NY,ME,VA,NC	
Nickel	CT,NH,NY,ME,VA,NC	
Selenium	CT,NH,NY,ME,VA,NC	
Silver	CT,NH,NY,ME,VA,NC	
Thallium	CT,NH,NY,VA,NC	
Vanadium	CT,NH,NY,ME,VA,NC	
Zinc	CT,NH,NY,ME,VA,NC	
SW-846 7471B in Soil		

Mercury

CT,NH,NY,NC,ME,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
СТ	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
RI	Rhode Island Department of Health	LAO00373	12/30/2023
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023

Different control MM MM attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute and other control interval and other control interval and other control interval attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attribute attrincer attribute attribute	Mark Mark Mark Italia Description And Andread Italia Description Description Itali	Page 01 1	- Preservation Lode Counter Use Only Total Number Of: VIAL5 PLAS5 PLASTIC	BACTERIA ENCORE	Glassware in freezer? Y / N Prepackaged Cooler? Y / N	*Pace Analytical is not responsible for missing samples from prepacked coolers	1 Matrix Codes: GW = Ground Water WW = Waster DW = Drinking Water	A = Air S = Soil S = Soilde S = Soilde S = Soilde S = Soilde	0 = Other (please define)	$2/w u_{1}^{2} _{1=tced}^{2}$ <u>Preservation Códes</u> : H = HCL	Indicate M = Methanol the Conc N = Nitric Acid tean; U - S = Sulfuric Acid tean; U - B = Sodium Bisulfate	X = Sodium Hydroxide	T = Sodium Thiosulfate Jam 0 = Other (please define)	rmation on the Chain of Custody. The ccurate and is used to determine what it the laboratory's responsibility. Pace
The matrix is a strain of t	The manual sector fraction in the sector	11 Rev 5_07/13/2021 ANALYSIS REQUESTED	21,0-19	TW hi ODN						ect, picked up	Please use the following codes to ir red possible sample concentration within rired Dode column above: Code column above: rired H - High; M - Medium; L - Low; C - C1 nired Unknown	ed by the set of the s	TA Other Chromatog	is not responsible for any omitted info ocument that must be complete and a perform. Any missing information is no
TERLINE CONTRICTION ILED/INVAVI, DEROBIBLIS, CONT CHAIN OF CLATON FROM OF CLATON FROM CLEAT A CLEAT A CLEAT A CLEA	CORRECTION INDURATION OF CONDUCTION RECORD COMPACTION RECORD	Pooc # 38 39 Spruce Street East Longmeadow, MA 01028 Stolver Mistall' Stimples	Field Filtered Lab to Filter Field Filtered Lab to Filter Lab to Filter	ET CITIET CITIENT ENCORE						trom same proj	ctell Reacturication to MA MCP Requirements MA MCP Requirements MCP Certification Form Requirements RCP Certification Form Requirements	MA State DW Requi	MWRA C WR School C WR MBTA C	Disclaimer: Pace Analytical Chain of Custody is a legal d analyses the laboratory will
I. Requests T. Day CUTDUD PEAS 10-Day (std) MM A O2SLO T. Day T. V. M. VO 2. Day T. Pay Peas To P: MM A O2SLO T. Day T. V. M. VO 2. Day MM A O2SLO Connat: Project Entity Dimone: MM A O2SLO Connat: Project Entity Connents: MM A O2SLO Connents MM A O2SLO Connents MM A O2SLO Connents	tical Phone: 413-525-332 First 413-525-405 First 413-525-405 First 413-525-405 Access COC3 and Support Requests Access COC3 and Access Acces	BBI BL www.pacelabs.com chain of custody record	10-Day 0 Due Date: 0 proval (required 0 3-Day 0 4-Day 0 2aft Delivery EXCEL	SOXHLE SOX NUTSILY NON SO	<u>م</u>					ided on chain that and an			PWSID # Municipality 21 J Brownfield 1	
	tical Phone: 413-525-2332 Fax: 413-525-6405 Access do Suppo Access do Suppo Access do Suppo Factorial Phone: 413-525-6405 Access do Suppo Factorial Phone: 413-525-6405 Access do Suppo Factorial Phone: 413-525-6405 Clent Sturb Distribution Clent Sample Distribution Distribution Clent Sample Distribution	http://	T. Requests 7-bay [] CTOUD PFAS 10-Day (std) [] MA OTSKO ************************************	Definition Other: Other Other: Other Other CLP Like Data Pkg R Email To: Email To: DINOL Fax To #: AutH45 Fax To #: AutH46 Entitie Const	2/2/23 10:15 Gra					00 Sample under	1955 an P.C.S1		Project Entity Fooject Entity Government Federal	

SY Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405 www.pacelabs.com	Login Sar – Using A brought t	.08 In I pple Receipt Chi cceptance Polic o the attention	VU2Sam Back-S ecklist – (Rejec y) Any False sta of the Client –	ple Receivi Sheet tion Criteria Lis atement will be True or False	ing Checklist	PEOPLE AD	CC [®] VANCING SCIENCI
Project Sand Rt Road (* 2019)		•				True	False
MCP/RCP Required MA - MCP		<u>Receiv</u>	ed on Ice				
Deliverable Package Req		Receiv	ed in Cooler	È			
Location Sand P.+ Rd, Truro, MA		Custod	y Seal: DAT	<u>Е Т</u>	IME	D	
PWSID# (When Applicable) n/α		COC Re	linguished				
Arrival Method:		<u>COC/Sa</u>	amples Labe	Is Agree			
	·····	<u>All Sam</u>	ples in Goo	d Condition			
Received By / Date / Time	1255	Sample	s Received	within Holdi	ng Time		
Back-Sheet By / Date / Time Mr. 3/9/23	1832	is there	enough Vo	lume			
Temperature Method fun#	3	Proper	Media/Cont	ainer lleed	·······	R R	Π
Temp $ < 6^{\circ} C$ Actual Temperature 2		Calibria			······		
Rush Samples: Yes / No Notify No		Splitting	<u>Samples Re</u>	equired			
Short Hold: Yes / No Notify No		MS/MS	0		<u> </u>		
Notes regarding Samples/COC outsic	le of SOP:	<u>Trip Blai</u> Lab to F	<u>ıks</u> ilters			(1988 (1944)	
······································	· ····	COCier	ihle	* · · ·		7	Π
		COC Inc	luded: (Ch	eck all inclu	uded)		
		Client		alysis 🗹	Sampler	Name	
	· ·	All Sam	ples Prop	er pH: (N/A [
Container (Circle when applicable) UnP HC	HNO3 H2	504 NaOH	Trizma	NaS2O3	Other Pres	ervative	
1L Amber Plastic							
250 mL Amber Plastic							
Other Amber Clear Plastic							
16oz Amber Clear	1					······································	
8oz Amber Clear 1							
4oz Amber Clear							
202 Amber Clear							
Col/Bacteria					····		
Plactic Bag						······	
SOC Kit	<u> </u>						
Perchlorate	<u> </u>		+			·	
Encore	+		++		API		
Frozen	1		++				
Proper Headspace UpD UC	i						1

		MADE	P MCP Analytical N	Nethod Report Cert	ification Form		
Labo	ratory Name	: Pace New En	gland		Project #: 23B	1132	
Project Location: Sand Pit Rd., Truro, MA. RTN:							
This F	Form provide	s certifications for t	he following data set	t: [list Laboratory Sar	nple ID Number(s)]		
23E	31132-01						
Matri	ces:	Soil					
С	AM Protoco	I (check all that b	oelow)				
8260 CAM	VOC II A ()	7470/7471 Hg CAM IIIB (X)	MassDEP VPH (GC/PID/FID) CAM IV A ()	8082 PCB CAM V A ()	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlo CAM V	orate III B()
8270 CAM	SVOC IIB()	7010 Metals CAM III C ()	MassDEP VPH (GC/MS) CAM IV C()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B()	MassD CAM I>	EP APH 〈 A ()
6010 CAM	Metals III A (X)	6020 Metals CAM III D()	MassDEP EPH CAM IV B (X)	8151 Herbicides CAM V C()	8330 Explosives CAM VIII A()	TO-15 CAM IX	VOC 〈B()
	Α	ffirmative response	to Questions A throu	ghF is required for "F	Presumptive Certainty"	status	
A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?							□No¹
B Were the analytical method(s) and all associated QC requirements specificed in the selected CAM protocol(s) followed?							□No¹
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?							□No¹
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?							□No¹
E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). Image: Constraint of the individual method of the indindividual method of the indindindividual method of the							□No¹
E b APH and TO-15 Methods only: Was the complete analyte list reported for each method?						□No¹	
F	Were all applic evaluated in a	cable CAM protocol QC laboratory narrative (in	and performance standa	ard non-conformances id to Qestions A through E	entified and)?	🗹 Yes	□No¹
	A response	e to questions G, H	and I below is require	ed for "Presumptive C	ertainty" status		
G	Were the repo protocol(s)?	rting limits at or below	all CAM reporting limits s	pecified in the selected C	CAM	☑ Yes	□No¹
<u>Data</u> and I	<u>User Note:</u> D representative	ata that achieve "Pr eness requirements	esumptive Certainty" described in 310 CM	status may not neces R 40. 1056 (2)(k) and V	ssarily meet the data us NSC-07-350.	sability	
н	Were all QC p	erfomance standards s	pecified in the CAM prote	ocol(s) achieved?		□ _{Yes}	⊿ _{No¹}
I	Were results re	eported for the complet	e analyte list specified in	the selected CAM protoc	col(s)?	🛛 Yes	□No¹
¹ <i>A</i> //	Negative resp	onses must be addre	ssed in an attached Ei	nvironmental Laborato	ry case narrative.		
l, th thos of n	e undersigned se responsible ny knowledge	d, attest under the p e for obtaining the i and belief, accurate	ains and penalties of nformation, the mater and complete.	perjury that, based u rial contained in this a	pon my personal inqui analytical report is, to th	ry of he best	
Sigi	nature:	Megha	né kelly	Position:	Reporting Specialist		
Prir	ited Name:	Meghan E. Kelle	y	Date:	02/22/23		

I

ANALYTICAL REPORT

Lab Number:	L2308720
Client:	Horseley & Witten, Inc.
	Sextant Hill Office Park
	90 Route 6A
	Sandwich, MA 02563
ATTN:	Brian Massa
Phone:	(508) 833-6600
Project Name:	SAND PIT ROAD, TRURO
Project Number:	22129
Report Date:	02/24/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:02242317:00

Project Name:SAND PIT ROAD, TRUROProject Number:22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2308720-01	MW-1	WATER	TRURO, MA	02/15/23 15:00	02/17/23
L2308720-02	MW-2	WATER	TRURO, MA	02/15/23 12:15	02/17/23
L2308720-03	MW-3	WATER	TRURO, MA	02/15/23 13:30	02/17/23

Project Name: SAND PIT ROAD, TRURO Project Number: 22129
 Lab Number:
 L2308720

 Report Date:
 02/24/23

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:SAND PIT ROAD, TRUROProject Number:22129

Lab Number: L2308720 Report Date: 02/24/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SAND PIT ROAD, TRURO Project Number: 22129

Lab Number: L2308720 **Report Date:** 02/24/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-gualified) have been guantitated to the limit noted in the MDL column.

MCP Related Narratives

Sample Receipt

L2308720-01, -02, and -03: Sample containers for PCB 8082A and SVOC 8270D were received but were not listed on the chain of custody. At the client's request, the analyses were not performed.

Volatile Organics

L2308720-01 through -03: Initial calibration utilized a quadratic fit for: bromomethane

In reference to guestion H:

L2308720-01 through -03: Initial Calibration did not meet:

Lowest Calibration Standard Minimum Response Factor: 1,4-dioxane (0.0013), 1,1,2-trichloroethane (0.1527),

1,2-dibromoethane (0.1749)

Average Response Factor: 1,4-dioxane, 1,1,2-trichloroethane

Verification: bromomethane (138%)

L2308720-01 through -03: The associated continuing calibration standard is outside the acceptance criteria for several compounds; however, it is within overall method allowances. Associated results are considered to be biased high if the %D is negative and biased low if the %D is positive. A copy of the continuing calibration standard is included as an addendum to this report.

Dissolved Metals

In reference to question G:

L2308720-01 through -03: One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

felly Mell Kelly O'Neill

Title: Technical Director/Representative

Date: 02/24/23

QC OUTLIER SUMMARY REPORT

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720

02/24/23 Report Date:

					Recovery/RPD	QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volatil	e Organics - Westborough Lab							
8260D	Batch QC	WG1746852-4	Chloromethane	LCSD	68	70-130	01-03	potential low bias
8260D	Batch QC	WG1746852-4	Acetone	LCSD	140	70-130	01-03	potential high bias

ORGANICS

VOLATILES

			Serial_No:	02242317:00
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720
Project Number:	22129		Report Date:	02/24/23
		SAMPLE RESULTS		
Lab ID:	L2308720-01		Date Collected:	02/15/23 15:00
Client ID:	MW-1		Date Received:	02/17/23
Sample Location:	TRURO, MA		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	141,8260D			
Analytical Date:	02/21/23 12:38			
Analyst:	MCM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough La	b					
Methylene chloride	ND		ug/l	2.0	0.68	1
1,1-Dichloroethane	ND		ug/l	1.0	0.21	1
Chloroform	ND		ug/l	1.0	0.22	1
Carbon tetrachloride	ND		ug/l	1.0	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.0	0.14	1
Tetrachloroethene	ND		ug/l	1.0	0.18	1
Chlorobenzene	ND		ug/l	1.0	0.18	1
Trichlorofluoromethane	ND		ug/l	2.0	0.16	1
1,2-Dichloroethane	ND		ug/l	1.0	0.13	1
1,1,1-Trichloroethane	ND		ug/l	1.0	0.16	1
Bromodichloromethane	ND		ug/l	1.0	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.40	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.40	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.40	0.14	1
1,1-Dichloropropene	ND		ug/l	2.0	0.24	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	1.0	0.20	1
Ethylbenzene	ND		ug/l	1.0	0.17	1
Chloromethane	ND		ug/l	2.0	0.20	1
Bromomethane	ND		ug/l	2.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.0	0.13	1
1,1-Dichloroethene	ND		ug/l	1.0	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	1.0	0.16	1

Serial_No:02242317:00 **Project Name:** SAND PIT ROAD, TRURO Lab Number: L2308720 **Project Number: Report Date:** 22129 02/24/23 SAMPLE RESULTS Lab ID: L2308720-01 Date Collected: 02/15/23 15:00 Client ID: **MW-1** Date Received: 02/17/23 Field Prep: Sample Location: TRURO, MA Refer to COC Sample Depth: MDL Result Qualifier Units RL **Dilution Factor** Parameter MCP Volatile Organics - Westborough Lab ND 1.0 0.18 1 Trichloroethene ug/l 1,2-Dichlorobenzene ND 1.0 0.18 1 ug/l 1,3-Dichlorobenzene ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND 1.0 0.19 1 ug/l Methyl tert butyl ether ND ug/l 2.0 0.17 1 p/m-Xylene ND ug/l 2.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1 cis-1,2-Dichloroethene ND ug/l 1.0 0.19 1 1,2-Dichloroethene, Total ND ug/l 1.0 0.16 1 Dibromomethane ND ug/l 2.0 0.36 1 1,2,3-Trichloropropane ND 1 ug/l 2.0 0.18 Styrene ND 1.0 0.36 1 ug/l Dichlorodifluoromethane ND ug/l 2.0 0.24 1 ND 5.0 1.5 1 Acetone ug/l Carbon disulfide ND 2.0 0.30 1 ug/l Methyl ethyl ketone ND ug/l 5.0 1.9 1 ND 5.0 0.42 1 Methyl isobutyl ketone ug/l 2-Hexanone ND 5.0 0.52 1 ug/l ND Bromochloromethane ug/l 2.0 0.15 1 ND 2.0 Tetrahydrofuran 0.52 1 ug/l 2,2-Dichloropropane ND 2.0 0.20 1 ug/l ND 2.0 0.19 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 2.0 0.21 1 ug/l 1,1,1,2-Tetrachloroethane ND 1.0 0.16 1 ug/l Bromobenzene ND 2.0 0.15 1 ug/l n-Butylbenzene ND 2.0 0.19 1 ug/l sec-Butylbenzene ND 2.0 0.18 1 ug/l ND 2.0 0.20 1 tert-Butylbenzene ug/l ND 2.0 0.22 o-Chlorotoluene 1 ug/l p-Chlorotoluene ND ug/l 2.0 0.18 1 ND 2.0 0.35 1,2-Dibromo-3-chloropropane 1 ug/l Hexachlorobutadiene ND 0.60 0.22 1 ug/l ND 2.0 1 Isopropylbenzene ug/l 0.19

ND

ND

ND

1

1

1

2.0

2.0

2.0

ug/l

ug/l

ug/l

0.19

0.22

0.17

p-Isopropyltoluene

n-Propylbenzene

Naphthalene

		Serial_No	0:02242317:00
Project Name:	SAND PIT ROAD, TRURO	Lab Number:	L2308720
Project Number:	22129	Report Date:	02/24/23
	SAMPLE RES	ULTS	
Lab ID:	L2308720-01	Date Collected:	02/15/23 15:00
Client ID:	MW-1	Date Received:	02/17/23
Sample Location:	TRURO, MA	Field Prep:	Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics - Westborough Lab									
1.2.3-Trichlorobenzene	ND		ua/l	2.0	0.23	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.0	0.22	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.0	0.22	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.0	0.19	1			
Diethyl ether	ND		ug/l	2.0	0.16	1			
Diisopropyl Ether	ND		ug/l	2.0	0.42	1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	0.18	1			
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1			
1,4-Dioxane	ND		ug/l	250	61.	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	117		70-130	

			Serial_No:	02242317:00
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720
Project Number:	22129		Report Date:	02/24/23
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2308720-02 MW-2 TRURO, MA		Date Collected: Date Received: Field Prep:	02/15/23 12:15 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 141,8260D 02/21/23 13:01 MCM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0	0.68	1
1,1-Dichloroethane	ND		ug/l	1.0	0.21	1
Chloroform	0.27	J	ug/l	1.0	0.22	1
Carbon tetrachloride	ND		ug/l	1.0	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.0	0.14	1
Tetrachloroethene	ND		ug/l	1.0	0.18	1
Chlorobenzene	ND		ug/l	1.0	0.18	1
Trichlorofluoromethane	ND		ug/l	2.0	0.16	1
1,2-Dichloroethane	ND		ug/l	1.0	0.13	1
1,1,1-Trichloroethane	ND		ug/l	1.0	0.16	1
Bromodichloromethane	ND		ug/l	1.0	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.40	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.40	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.40	0.14	1
1,1-Dichloropropene	ND		ug/l	2.0	0.24	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	1.0	0.20	1
Ethylbenzene	ND		ug/l	1.0	0.17	1
Chloromethane	ND		ug/l	2.0	0.20	1
Bromomethane	ND		ug/l	2.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.0	0.13	1
1,1-Dichloroethene	ND		ug/l	1.0	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	1.0	0.16	1

Serial_No:02242317:00 **Project Name:** SAND PIT ROAD, TRURO Lab Number: L2308720 **Project Number: Report Date:** 22129 02/24/23 SAMPLE RESULTS Lab ID: L2308720-02 Date Collected: 02/15/23 12:15 Client ID: MW-2 Date Received: 02/17/23 Field Prep: Sample Location: TRURO, MA Refer to COC Sample Depth: MDL Result Qualifier Units RL **Dilution Factor** Parameter MCP Volatile Organics - Westborough Lab ND 1.0 0.18 1 Trichloroethene ug/l 1,2-Dichlorobenzene ND ug/l 1.0 0.18 1 1,3-Dichlorobenzene ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND 1.0 0.19 1 ug/l Methyl tert butyl ether ND ug/l 2.0 0.17 1 p/m-Xylene ND ug/l 2.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1 cis-1,2-Dichloroethene ND ug/l 1.0 0.19 1 1,2-Dichloroethene, Total ND ug/l 1.0 0.16 1 Dibromomethane ND ug/l 2.0 0.36 1 1,2,3-Trichloropropane ND 1 ug/l 2.0 0.18 Styrene ND 1.0 0.36 1 ug/l Dichlorodifluoromethane ND ug/l 2.0 0.24 1 Acetone ND 5.0 1.5 1 ug/l Carbon disulfide ND 2.0 0.30 1 ug/l Methyl ethyl ketone ND ug/l 5.0 1.9 1 ND 5.0 0.42 1 Methyl isobutyl ketone ug/l 2-Hexanone ND 5.0 0.52 1 ug/l ND Bromochloromethane ug/l 2.0 0.15 1 Tetrahydrofuran 2.0 8.6 0.52 1 ug/l 2,2-Dichloropropane ND 2.0 0.20 1 ug/l ND 2.0 0.19 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 2.0 0.21 1 ug/l 1,1,1,2-Tetrachloroethane ND 1.0 0.16 1 ug/l Bromobenzene ND 2.0 0.15 1 ug/l n-Butylbenzene ND 2.0 0.19 1 ug/l sec-Butylbenzene ND 2.0 0.18 1 ug/l ND 2.0 0.20 1 tert-Butylbenzene ug/l ND 2.0 0.22 o-Chlorotoluene 1 ug/l p-Chlorotoluene ND ug/l 2.0 0.18 1 ND 2.0 0.35 1,2-Dibromo-3-chloropropane 1 ug/l Hexachlorobutadiene ND 0.60 0.22 1 ug/l

ND

ND

ND

ND

1

1

1

1

2.0

2.0

2.0

2.0

0.19

0.19

0.22

0.17

ug/l

ug/l

ug/l

ug/l

Isopropylbenzene

p-Isopropyltoluene

n-Propylbenzene

Naphthalene

	Serial_No	0:02242317:00
PIT ROAD, TRURO	Lab Number:	L2308720
	Report Date:	02/24/23
SAMPLE RESULTS		
8720-02	Date Collected:	02/15/23 12:15
2	Date Received:	02/17/23
RO, MA	Field Prep:	Refer to COC
F	PIT ROAD, TRURO SAMPLE RESULTS 8720-02 2 RO, MA	PIT ROAD, TRURO PIT ROAD, TRURO SAMPLE RESULTS 8720-02 RO, MA Serial_No Ser

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics - Westborough Lab									
1 2 3-Trichlorobenzene	ND		ug/l	2.0	0.23	1			
1.2.4-Trichlorobenzene	ND		ug/l	2.0	0.20	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.0	0.22	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.0	0.19	1			
Diethyl ether	ND		ug/l	2.0	0.16	1			
Diisopropyl Ether	ND		ug/l	2.0	0.42	1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	0.18	1			
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1			
1,4-Dioxane	ND		ug/l	250	61.	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	115		70-130	

			Serial_No:	02242317:00
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720
Project Number:	22129		Report Date:	02/24/23
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2308720-03 MW-3 TRURO, MA		Date Collected: Date Received: Field Prep:	02/15/23 13:30 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 141,8260D 02/21/23 13:23 MCM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics - Westborough Lab									
Methylene chloride	ND		ug/l	2.0	0.68	1			
1,1-Dichloroethane	ND		ug/l	1.0	0.21	1			
Chloroform	ND		ug/l	1.0	0.22	1			
Carbon tetrachloride	ND		ug/l	1.0	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	1.0	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.0	0.14	1			
Tetrachloroethene	ND		ug/l	1.0	0.18	1			
Chlorobenzene	ND		ug/l	1.0	0.18	1			
Trichlorofluoromethane	ND		ug/l	2.0	0.16	1			
1,2-Dichloroethane	ND		ug/l	1.0	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	1.0	0.16	1			
Bromodichloromethane	ND		ug/l	1.0	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.40	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.40	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.40	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.0	0.24	1			
Bromoform	ND		ug/l	2.0	0.25	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	1.0	0.20	1			
Ethylbenzene	ND		ug/l	1.0	0.17	1			
Chloromethane	ND		ug/l	2.0	0.20	1			
Bromomethane	ND		ug/l	2.0	0.26	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.0	0.13	1			
1,1-Dichloroethene	ND		ug/l	1.0	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	1.0	0.16	1			

Serial_No:02242317:00 **Project Name:** SAND PIT ROAD, TRURO Lab Number: L2308720 **Project Number: Report Date:** 22129 02/24/23 SAMPLE RESULTS Lab ID: L2308720-03 Date Collected: 02/15/23 13:30 Client ID: MW-3 Date Received: 02/17/23 Field Prep: Sample Location: TRURO, MA Refer to COC Sample Depth: MDL Result Qualifier Units RL **Dilution Factor** Parameter MCP Volatile Organics - Westborough Lab ND 1.0 0.18 1 Trichloroethene ug/l 1,2-Dichlorobenzene ND ug/l 1.0 0.18 1 1,3-Dichlorobenzene ND ug/l 1.0 0.19 1 1,4-Dichlorobenzene ND 1.0 0.19 1 ug/l Methyl tert butyl ether ND ug/l 2.0 0.17 1 p/m-Xylene ND ug/l 2.0 0.33 1 o-Xylene ND ug/l 1.0 0.39 1 Xylenes, Total ND ug/l 1.0 0.33 1 cis-1,2-Dichloroethene ND ug/l 1.0 0.19 1 1,2-Dichloroethene, Total ND ug/l 1.0 0.16 1 Dibromomethane ND ug/l 2.0 0.36 1 1,2,3-Trichloropropane ND 1 ug/l 2.0 0.18 Styrene ND 1.0 0.36 1 ug/l Dichlorodifluoromethane ND ug/l 2.0 0.24 1 J 3.0 5.0 1.5 1 Acetone ug/l Carbon disulfide ND 2.0 ug/l 0.30 1 Methyl ethyl ketone ND ug/l 5.0 1.9 1 ND 5.0 0.42 1 Methyl isobutyl ketone ug/l 2-Hexanone ND 5.0 0.52 1 ug/l ND Bromochloromethane ug/l 2.0 0.15 1 Tetrahydrofuran 2.0 2.5 0.52 1 ug/l 2,2-Dichloropropane ND 2.0 0.20 1 ug/l ND 2.0 0.19 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 2.0 0.21 1 ug/l 1,1,1,2-Tetrachloroethane ND 1.0 0.16 1 ug/l Bromobenzene ND 2.0 0.15 1 ug/l n-Butylbenzene ND 2.0 0.19 1 ug/l sec-Butylbenzene ND 2.0 0.18 1 ug/l ND 2.0 0.20 1 tert-Butylbenzene ug/l ND 2.0 0.22 o-Chlorotoluene 1 ug/l p-Chlorotoluene ND ug/l 2.0 0.18 1 ND 2.0 0.35 1,2-Dibromo-3-chloropropane 1 ug/l Hexachlorobutadiene ND 0.60 0.22 1 ug/l ND 2.0 1 Isopropylbenzene ug/l 0.19

ND

ND

ND

1

1

1

2.0

2.0

2.0

ug/l

ug/l

ug/l

0.19

0.22

0.17

p-Isopropyltoluene

n-Propylbenzene

Naphthalene

		Serial_N			
Project Name:	SAND PIT ROAD, TRURO	Lab Number:	L2308720		
Project Number:	22129	Report Date:	02/24/23		
	SAMPLE RES	ULTS			
Lab ID:	L2308720-03	Date Collected:	02/15/23 13:30		
Client ID:	MW-3	Date Received:	02/17/23		
Sample Location:	TRURO, MA	Field Prep:	Refer to COC		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
1 2 3-Trichlorobenzene	ND		ua/l	20	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.0	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.0	0.22	1
1,2,4-Trimethylbenzene	ND		ug/l	2.0	0.19	1
Diethyl ether	ND		ug/l	2.0	0.16	1
Diisopropyl Ether	ND		ug/l	2.0	0.42	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	0.18	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1
1,4-Dioxane	ND		ug/l	250	61.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	116	70-130	

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

JRO

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:141,8260DAnalytical Date:02/21/23 06:35Analyst:MCM

Parameter	Result	Qualifier	Units	RL	. MDL
MCP Volatile Organics - Wes	tborough Lab for s	sample(s):	01-03	Batch:	WG1746852-5
Methylene chloride	ND		ug/l	2.0	0.68
1,1-Dichloroethane	ND		ug/l	1.0	0.21
Chloroform	ND		ug/l	1.0	0.22
Carbon tetrachloride	ND		ug/l	1.0	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.14
Dibromochloromethane	ND		ug/l	1.0	0.15
1,1,2-Trichloroethane	ND		ug/l	1.0	0.14
Tetrachloroethene	ND		ug/l	1.0	0.18
Chlorobenzene	ND		ug/l	1.0	0.18
Trichlorofluoromethane	ND		ug/l	2.0	0.16
1,2-Dichloroethane	ND		ug/l	1.0	0.13
1,1,1-Trichloroethane	ND		ug/l	1.0	0.16
Bromodichloromethane	ND		ug/l	1.0	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.4	0 0.16
cis-1,3-Dichloropropene	ND		ug/l	0.4	0 0.14
1,3-Dichloropropene, Total	ND		ug/l	0.4	0 0.14
1,1-Dichloropropene	ND		ug/l	2.0	0.24
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.17
Benzene	ND		ug/l	0.5	0 0.16
Toluene	ND		ug/l	1.0	0.20
Ethylbenzene	ND		ug/l	1.0	0.17
Chloromethane	ND		ug/l	2.0	0.20
Bromomethane	ND		ug/l	2.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.0	0.13
1,1-Dichloroethene	ND		ug/l	1.0	0.17
trans-1,2-Dichloroethene	ND		ug/l	1.0	0.16
Trichloroethene	ND		ug/l	1.0	0.18

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:141,8260DAnalytical Date:02/21/23 06:35Analyst:MCM

Parameter	Result	Qualifier	Units	RL	. MDL	
MCP Volatile Organics - We	stborough Lab for s	sample(s):	01-03	Batch:	WG1746852-5	
1,2-Dichlorobenzene	ND		ug/l	1.(0.18	
1,3-Dichlorobenzene	ND		ug/l	1.0	0.19	
1,4-Dichlorobenzene	ND		ug/l	1.0	0.19	
Methyl tert butyl ether	ND		ug/l	2.0	0.17	
p/m-Xylene	ND		ug/l	2.0	0.33	
o-Xylene	ND		ug/l	1.0	0.39	
Xylenes, Total	ND		ug/l	1.0	0.33	
cis-1,2-Dichloroethene	ND		ug/l	1.0	0.19	
1,2-Dichloroethene, Total	ND		ug/l	1.0	0.16	
Dibromomethane	ND		ug/l	2.0	0.36	
1,2,3-Trichloropropane	ND		ug/l	2.0	0.18	
Styrene	ND		ug/l	1.0	0.36	
Dichlorodifluoromethane	ND		ug/l	2.0	0.24	
Acetone	ND		ug/l	5.0) 1.5	
Carbon disulfide	ND		ug/l	2.0	0.30	
Methyl ethyl ketone	ND		ug/l	5.0) 1.9	
Methyl isobutyl ketone	ND		ug/l	5.0	0.42	
2-Hexanone	ND		ug/l	5.0	0.52	
Bromochloromethane	ND		ug/l	2.0	0.15	
Tetrahydrofuran	ND		ug/l	2.0	0.52	
2,2-Dichloropropane	ND		ug/l	2.0	0.20	
1,2-Dibromoethane	ND		ug/l	2.0	0.19	
1,3-Dichloropropane	ND		ug/l	2.0	0.21	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	0.16	
Bromobenzene	ND		ug/l	2.0	0.15	
n-Butylbenzene	ND		ug/l	2.0	0.19	
sec-Butylbenzene	ND		ug/l	2.0	0.18	
tert-Butylbenzene	ND		ug/l	2.0	0.20	
o-Chlorotoluene	ND		ug/l	2.0	0.22	

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: Report Date:

mber:L2308720Date:02/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:141,8260DAnalytical Date:02/21/23 06:35Analyst:MCM

Parameter	Result	Qualifier	Units	RI	_ MDL	
MCP Volatile Organics - Westborou	igh Lab for s	sample(s):	01-03	Batch:	WG1746852-5	
p-Chlorotoluene	ND		ug/l	2.(0.18	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0	0.35	
Hexachlorobutadiene	ND		ug/l	0.6	0 0.22	
Isopropylbenzene	ND		ug/l	2.0	0.19	
p-Isopropyltoluene	ND		ug/l	2.0	0.19	
Naphthalene	ND		ug/l	2.0	0.22	
n-Propylbenzene	ND		ug/l	2.0	0.17	
1,2,3-Trichlorobenzene	ND		ug/l	2.0	0.23	
1,2,4-Trichlorobenzene	ND		ug/l	2.0	0.22	
1,3,5-Trimethylbenzene	ND		ug/l	2.0	0.22	
1,2,4-Trimethylbenzene	ND		ug/l	2.0	0.19	
Diethyl ether	ND		ug/l	2.0	0.16	
Diisopropyl Ether	ND		ug/l	2.0	0.42	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	0.18	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	
1,4-Dioxane	ND		ug/l	25	0 61.	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	114		70-130	

Project Number: 22129

Lab Number: L2308720 02/24/23

Report Date:

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG17	46852-3	WG1746852-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	100		100		70-130	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	95		95		70-130	0	20	
1,1,2-Trichloroethane	99		98		70-130	1	20	
Tetrachloroethene	100		98		70-130	2	20	
Chlorobenzene	100		100		70-130	0	20	
Trichlorofluoromethane	100		100		70-130	0	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		100		70-130	10	20	
Bromodichloromethane	100		100		70-130	0	20	
trans-1,3-Dichloropropene	99		96		70-130	3	20	
cis-1,3-Dichloropropene	98		99		70-130	1	20	
1,1-Dichloropropene	110		100		70-130	10	20	
Bromoform	100		99		70-130	1	20	
1,1,2,2-Tetrachloroethane	100		100		70-130	0	20	
Benzene	100		100		70-130	0	20	
Toluene	100		99		70-130	1	20	
Ethylbenzene	110		100		70-130	10	20	
Chloromethane	72		68	Q	70-130	6	20	
Bromomethane	97		98		70-130	1	20	

Project Number: 22129 Lab Number: L2308720 02/24/23

Report Date:

Parameter	LCS %Recovery Qua	. %F	LCSD Recoverv	Qual	%Recovery	PPN	Qual	RPD Limits	
		///////////////////////////////////////		Quai	Emits		Quai	Linits	
MCP Volatile Organics - Westborough Lab	Associated sample(s):	01-03 Bat	ch: WG17	46852-3	WG1746852-4				
Vinyl chloride	97		94		70-130	3		20	
Chloroethane	97		94		70-130	3		20	
1,1-Dichloroethene	100		99		70-130	1		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	100		97		70-130	3		20	
1,2-Dichlorobenzene	110		100		70-130	10		20	
1,3-Dichlorobenzene	110		100		70-130	10		20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	96		99		70-130	3		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Dibromomethane	98		100		70-130	2		20	
1,2,3-Trichloropropane	100		100		70-130	0		20	
Styrene	105		105		70-130	0		20	
Dichlorodifluoromethane	85		84		70-130	1		20	
Acetone	120		140	Q	70-130	15		20	
Carbon disulfide	100		98		70-130	2		20	
Methyl ethyl ketone	91		96		70-130	5		20	
Methyl isobutyl ketone	94		95		70-130	1		20	
2-Hexanone	110		110		70-130	0		20	
Bromochloromethane	100		100		70-130	0		20	
Tetrahydrofuran	98		100		70-130	2		20	

Project Number: 22129 Lab Number: L2308720 02/24/23

Report Date:

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-03	Batch: WG17	46852-3 W	/G1746852-4			
2,2-Dichloropropane	100		100		70-130	0	20	
1,2-Dibromoethane	99		97		70-130	2	20	
1,3-Dichloropropane	100		99		70-130	1	20	
1,1,1,2-Tetrachloroethane	96		93		70-130	3	20	
Bromobenzene	110		110		70-130	0	20	
n-Butylbenzene	100		100		70-130	0	20	
sec-Butylbenzene	110		110		70-130	0	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	110		110		70-130	0	20	
p-Chlorotoluene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	97		100		70-130	3	20	
Hexachlorobutadiene	100		100		70-130	0	20	
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	100		100		70-130	0	20	
n-Propylbenzene	110		110		70-130	0	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trichlorobenzene	100		100		70-130	0	20	
1,3,5-Trimethylbenzene	99		96		70-130	3	20	
1,2,4-Trimethylbenzene	100		97		70-130	3	20	
Diethyl ether	100		100		70-130	0	20	
Diisopropyl Ether	98		96		70-130	2	20	
Ethyl-Tert-Butyl-Ether	95		95		70-130	0	20	

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Volatile Organics - Westborough Lab A	ssociated sampl	le(s): 01-03	Batch: WG17	46852-3 W	/G1746852-4				
Tertiary-Amyl Methyl Ether	93		93		70-130	0		20	
1,4-Dioxane	96		94		70-130	2		20	

	LCS	LCSD	Acceptance		
Surrogate	%Recovery Qua	%Recovery Qual	Criteria		
1,2-Dichloroethane-d4	106	111	70-130		
Toluene-d8	102	102	70-130		
4-Bromofluorobenzene	111	109	70-130		
Dibromofluoromethane	101	104	70-130		

PETROLEUM HYDROCARBONS

Serial_No:02242317:00						2242317:00	
Project Name:	SAND PIT ROAD, TRURC)			Lab Numb	er:	L2308720
Project Number:	22129				Report Dat	te:	02/24/23
-		SAMPLE R	ESULTS		•		
Lab ID: Client ID: Sample Location:	L2308720-01 MW-1 TRURO, MA				Date Collect Date Receive Field Prep:	əd: əd:	02/15/23 15:00 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 131,VPH-18-2.1 02/24/23 01:31 BAD						
Trap:	EST, Carbopack B/Carboxe	n 1000&1001			Analytical Co	umn:	Restek, RTX-502.2, 105m, 0.53ID, 3um
	Qu	ality Control	Informatio	n			
Condition of sample rece	eived:				Sa	itisfactory	
Aqueous Preservative:					La	boratory P	rovided Preserved
Sample Temperature up	on receipt:				Re	ceived on	Ice
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbord	ough Lab					
C5-C8 Aliphatics	•			ug/l	100	100	1
C9-C12 Aliphatics		ND		ug/l	100	100.	1
C9-C10 Aromatics		ND		ug/l	100	100.	1
C5-C8 Aliphatics, Adjust	ed	ND		ug/l	100	100.	1
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	100	100.	1
Benzene		ND		ug/l	2.00	2.00	1
Toluene		ND		ug/l	2.00	2.00	1
Ethylbenzene		ND		ug/l	2.00	2.00	1
p/m-Xylene		ND		ug/l	2.00	2.00	1
o-Xylene		ND		ug/l	2.00	2.00	1
Methyl tert butyl ether		ND		ug/l	3.00	3.00	1
Naphthalene		ND		ug/l	4.00	4.00	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	102		70-130	
2,5-Dibromotoluene-FID	102		70-130	

		Serial_No:02242317:00				
Project Name:	SAND PIT ROAD, 1	TRURO		Lab Number:	L2308720	
Project Number:	22129			Report Date:	02/24/23	
		SAMPLE RE	ESULTS			
Lab ID: Client ID: Sample Location:	L2308720-01 MW-1 TRURO, MA			Date Collected: Date Received: Field Prep:	02/15/23 15:00 02/17/23 Refer to COC	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 135,EPH-19-2.1 02/23/23 14:35 SC	M.S. Analytical Date: M.S. Analyst:	02/23/23 09:21 AH	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 02/19/23 21:25 EPH-19-2.1 02/22/23	

Quality Control Information	ı
Condition of sample received:	Satisfactory
Aqueous Preservative: Sample Temperature upon receipt:	Laboratory Provided Preser Container Received on Ice
Sample Extraction method:	Extracted Per the Method

-						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/Targets via GCMS-SIM - Westborough	n Lab					
C9-C18 Aliphatics	ND		ug/l	100	100.	1
C19-C36 Aliphatics	ND		ug/l	100	100.	1
C11-C22 Aromatics	ND		ug/l	100	100.	1
C11-C22 Aromatics, Adjusted	ND		ug/l	100	100.	1
Naphthalene	ND		ug/l	0.400	0.136	1
2-Methylnaphthalene	ND		ug/l	0.400	0.077	1
Acenaphthylene	ND		ug/l	0.400	0.054	1
Acenaphthene	ND		ug/l	0.400	0.091	1
Fluorene	ND		ug/l	0.400	0.097	1
Phenanthrene	ND		ug/l	0.400	0.084	1
Anthracene	ND		ug/l	0.400	0.079	1
Fluoranthene	ND		ug/l	0.400	0.121	1
Pyrene	ND		ug/l	0.400	0.114	1
Benzo(a)anthracene	ND		ug/l	0.400	0.088	1
Chrysene	ND		ug/l	0.400	0.102	1
Benzo(b)fluoranthene	ND		ug/l	0.400	0.102	1
Benzo(k)fluoranthene	ND		ug/l	0.400	0.126	1
Benzo(a)pyrene	ND		ug/l	0.200	0.072	1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400	0.095	1
Dibenzo(a,h)anthracene	ND		ug/l	0.400	0.091	1
Benzo(ghi)perylene	ND		ug/l	0.400	0.102	1

		Serial_No:02242317:00				
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720		
Project Number:	22129		Report Date:	02/24/23		
	:	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L2308720-01 MW-1 TRURO, MA		Date Collected: Date Received: Field Prep:	02/15/23 15:00 02/17/23 Refer to COC		
Sample Depth:						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/Targets via GCMS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	59		40-140	
o-Terphenyl	83		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	75		40-140	
O-Terphenyl-MS	97		40-140	

Serial_No:02242317:00							2242317:00	
Project Name:	SAND PIT ROAD, TRURC)			Lab Numb	er:	L2308720	
Project Number:	22129				Report Dat	te:	02/24/23	
-		SAMPLE R	ESULTS		•			
Lab ID: Client ID: Sample Location:	L2308720-02 MW-2 TRURO, MA				Date Collecto Date Receivo Field Prep:	ed: ed:	02/15/23 12:15 02/17/23 Refer to COC	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 131,VPH-18-2.1 02/24/23 02:01 BAD							
Trap:	EST, Carbopack B/Carboxe	n 1000&1001			Analytical Co	umn:	Restek, RTX-502.2, 105m, 0.53ID, 3um	
	Qu	ality Control	Informatio	n				
Condition of sample rece	eived:				Sa	tisfactory		
Aqueous Preservative:					La	boratory P	rovided Preserved	
Sample Temperature up	on receipt:				Re	eceived on	Ice	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Petroleum	Hydrocarbons - Westbord	ough Lab						
C5-C8 Aliphatics		ND		ug/l	100	100.	1	
C9-C12 Aliphatics		ND		ug/l	100	100.	1	
C9-C10 Aromatics		ND		ug/l	100	100.	1	
C5-C8 Aliphatics, Adjust	ed	ND		ug/l	100	100.	1	
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	100	100.	1	
Benzene		ND		ug/l	2.00	2.00	1	
Toluene		ND		ug/l	2.00	2.00	1	
Ethylbenzene		ND		ug/l	2.00	2.00	1	
p/m-Xylene		ND		ug/l	2.00	2.00	1	
o-Xylene		ND		ug/l	2.00	2.00	1	
Methyl tert butyl ether		ND		ug/l	3.00	3.00	1	
Naphthalene		ND		ug/l	4.00	4.00	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	102		70-130	
2,5-Dibromotoluene-FID	102		70-130	

			Serial_No:02242317:0		
Project Name:	SAND PIT ROAD, 1	TRURO		Lab Number:	L2308720
Project Number:	22129			Report Date:	02/24/23
		SAMPLE RE	ESULTS		
Lab ID: Client ID: Sample Location:	L2308720-02 MW-2 TRURO, MA			Date Collected: Date Received: Field Prep:	02/15/23 12:15 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 135,EPH-19-2.1 02/23/23 15:00 SC	M.S. Analytical Date: M.S. Analyst:	02/23/23 09:38 AH	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 02/19/23 21:25 EPH-19-2.1 02/22/23

Quality Control Information					
Condition of sample received:	Satisfactory				
Aqueous Preservative: Sample Temperature upon receipt:	Laboratory Provided Preser Container Received on Ice				
Sample Extraction method:	Extracted Per the Method				

Demonster	Decult	Qualifian	Unite	Ы	MDI	Dilution Factor			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
EPH w/Targets via GCMS-SIM - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100	100.	1			
C19-C36 Aliphatics	ND		ug/l	100	100.	1			
C11-C22 Aromatics	ND		ug/l	100	100.	1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100	100.	1			
Naphthalene	ND		ug/l	0.400	0.136	1			
2-Methylnaphthalene	ND		ug/l	0.400	0.077	1			
Acenaphthylene	ND		ug/l	0.400	0.054	1			
Acenaphthene	ND		ug/l	0.400	0.091	1			
Fluorene	ND		ug/l	0.400	0.097	1			
Phenanthrene	ND		ug/l	0.400	0.084	1			
Anthracene	ND		ug/l	0.400	0.079	1			
Fluoranthene	ND		ug/l	0.400	0.121	1			
Pyrene	ND		ug/l	0.400	0.114	1			
Benzo(a)anthracene	ND		ug/l	0.400	0.088	1			
Chrysene	ND		ug/l	0.400	0.102	1			
Benzo(b)fluoranthene	ND		ug/l	0.400	0.102	1			
Benzo(k)fluoranthene	ND		ug/l	0.400	0.126	1			
Benzo(a)pyrene	ND		ug/l	0.200	0.072	1			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400	0.095	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.400	0.091	1			
Benzo(ghi)perylene	ND		ug/l	0.400	0.102	1			

			Serial_No:02242317:00		
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720	
Project Number:	22129		Report Date:	02/24/23	
	SA	MPLE RESULTS			
Lab ID:	L2308720-02		Date Collected:	02/15/23 12:15	
Client ID:	MW-2		Date Received:	02/17/23	
Sample Location:	TRURO, MA		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/Targets via GCMS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	64	40-140
o-Terphenyl	74	40-140
2-Fluorobiphenyl	74	40-140
2-Bromonaphthalene	73	40-140
O-Terphenyl-MS	79	40-140

Serial_					al_No:02	2242317:00	
Project Name:	SAND PIT ROAD, TRURC)			Lab Numb	er:	L2308720
Project Number:	22129				Report Dat	e:	02/24/23
		SAMPLE R	ESULTS				
Lab ID: Client ID: Sample Location:	L2308720-03 MW-3 TRURO, MA				Date Collecte Date Receive Field Prep:	ed: ed:	02/15/23 13:30 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 131,VPH-18-2.1 02/24/23 02:31 BAD						
Trap:	EST, Carbopack B/Carboxe	n 1000&1001			Analytical Col	umn:	Restek, RTX-502.2, 105m, 0.53ID, 3um
	Qu	ality Control	Informatio	n			
Condition of sample received: Satisfactory Aqueous Preservative: Laboratory Provided Preserved						rovided Preserved	
Sample Temperature up	on receipt:				Re	ceived on	Ice
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbord	ough Lab					
C5-C8 Aliphatics		ND		ug/l	100	100.	1
C9-C12 Aliphatics		ND		ug/l	100	100.	1
C9-C10 Aromatics		ND		ug/l	100	100.	1
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	100	100.	1
C9-C12 Aliphatics, Adjus	ted	ND		ug/l	100	100.	1
Benzene		ND		ug/l	2.00	2.00	1
Toluene		ND		ug/l	2.00	2.00	1
Ethylbenzene		ND		ug/l	2.00	2.00	1
p/m-Xylene		ND		ug/l	2.00	2.00	1
o-Xylene		ND		ug/l	2.00	2.00	1
Methyl tert butyl ether		ND		ug/l	3.00	3.00	1
Naphthalene		ND		ug/l	4.00	4.00	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	104		70-130	
2,5-Dibromotoluene-FID	104		70-130	

		Serial_No:02242317:0)2242317:00
Project Name:	SAND PIT ROAD,	TRURO		Lab Number:	L2308720
Project Number:	22129			Report Date:	02/24/23
		SAMPLE RE	SULTS		
Lab ID: Client ID: Sample Location:	L2308720-03 MW-3 TRURO, MA			Date Collected: Date Received: Field Prep:	02/15/23 13:30 02/17/23 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 135,EPH-19-2.1 02/23/23 15:25 SC	M.S. Analytical Date: M.S. Analyst:	02/23/23 09:54 AH	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 02/19/23 21:25 EPH-19-2.1 02/22/23

Quality Control Information					
Condition of sample received:	Satisfactory				
Aqueous Preservative:	Laboratory Provided Preserv Container Received on Ice				
Sample Extraction method:	Extracted Per the Method				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
EPH w/Targets via GCMS-SIM - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100	100.	1		
C19-C36 Aliphatics	ND		ug/l	100	100.	1		
C11-C22 Aromatics	ND		ug/l	100	100.	1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100	100.	1		
Naphthalene	ND		ug/l	0.400	0.136	1		
2-Methylnaphthalene	ND		ug/l	0.400	0.077	1		
Acenaphthylene	ND		ug/l	0.400	0.054	1		
Acenaphthene	ND		ug/l	0.400	0.091	1		
Fluorene	ND		ug/l	0.400	0.097	1		
Phenanthrene	ND		ug/l	0.400	0.084	1		
Anthracene	ND		ug/l	0.400	0.079	1		
Fluoranthene	ND		ug/l	0.400	0.121	1		
Pyrene	ND		ug/l	0.400	0.114	1		
Benzo(a)anthracene	ND		ug/l	0.400	0.088	1		
Chrysene	ND		ug/l	0.400	0.102	1		
Benzo(b)fluoranthene	ND		ug/l	0.400	0.102	1		
Benzo(k)fluoranthene	ND		ug/l	0.400	0.126	1		
Benzo(a)pyrene	ND		ug/l	0.200	0.072	1		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400	0.095	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.400	0.091	1		
Benzo(ghi)perylene	ND		ug/l	0.400	0.102	1		

			Serial_No:02242317:00		
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308720	
Project Number:	22129		Report Date:	02/24/23	
	S/	MPLE RESULTS			
Lab ID:	L2308720-03		Date Collected:	02/15/23 13:30	
Client ID:	MW-3		Date Received:	02/17/23	
Sample Location:	TRURO, MA		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/Targets via GCMS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	74		40-140	
o-Terphenyl	69		40-140	
2-Fluorobiphenyl	71		40-140	
2-Bromonaphthalene	72		40-140	
O-Terphenyl-MS	81		40-140	

Project Name:	SAND PIT ROAD, TRURO	Lab Number:	L2308720
Project Number:	22129	Report Date:	02/24/23
	Method Blank Analysis		
	Batch Quality Control		

Analytical Method:	135,EPH-19-2.1			Extraction Method:	EPA 3510C
Analytical Date:	02/21/23 11:52	M.S. Analytical Date:	02/21/23 10:58	Extraction Date:	02/19/23 21:25
Analyst:	ALL	M.S. Analyst:	JJW	Cleanup Method:	EPH-19-2.1 02/20/23
				Cleanup Date.	02/20/20

Parameter	Result	Qualifier	Units	R	L	MDL
EPH w/Targets via GCMS-SIM -	Westborough	Lab for sar	nple(s):	01-03	Batch:	WG1746264-1
C9-C18 Aliphatics	ND		ug/l	10	00	100.
C19-C36 Aliphatics	ND		ug/l	10	00	100.
C11-C22 Aromatics	ND		ug/l	10	00	100.
C11-C22 Aromatics, Adjusted	ND		ug/l	10	00	100.
Naphthalene	ND		ug/l	0.4	00	0.136
2-Methylnaphthalene	ND		ug/l	0.4	00	0.077
Acenaphthylene	ND		ug/l	0.4	00	0.054
Acenaphthene	ND		ug/l	0.4	00	0.091
Fluorene	ND		ug/l	0.4	00	0.097
Phenanthrene	ND		ug/l	0.4	00	0.084
Anthracene	ND		ug/l	0.4	00	0.079
Fluoranthene	ND		ug/l	0.4	00	0.121
Pyrene	ND		ug/l	0.4	00	0.114
Benzo(a)anthracene	ND		ug/l	0.4	00	0.088
Chrysene	ND		ug/l	0.4	00	0.102
Benzo(b)fluoranthene	ND		ug/l	0.4	00	0.102
Benzo(k)fluoranthene	ND		ug/l	0.4	00	0.126
Benzo(a)pyrene	ND		ug/l	0.2	:00	0.072
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.4	00	0.095
Dibenzo(a,h)anthracene	ND		ug/l	0.4	00	0.091
Benzo(ghi)perylene	ND		ug/l	0.4	00	0.102

Project Name:	SAND PIT ROAD,	SAND PIT ROAD, TRURO Lab Number			
Project Number:	22129			Report Date:	02/24/23
		Method Blank Batch Quality	Analysis Control		
Analytical Method: Analytical Date: Analyst:	135,EPH-19-2.1 02/21/23 11:52 ALL	M.S. Analytical Date: M.S. Analyst:	02/21/23 10:58 JJW	Extraction Method: Extraction Date: Cleanup Method: Cleanup Date:	EPA 3510C 02/19/23 21:25 EPH-19-2.1 02/20/23

Parameter	Result	Qualifier	Units	s RL		MDL	
EPH w/Targets via GCMS-SIM - W	estborough	Lab for sar	nple(s):	01-03	Batch:	WG1746264-1	

Surrogate	%Recovery Qua	Acceptance Ilifier Criteria
Chloro-Octadecane	69	40-140
o-Terphenyl	74	40-140
2-Fluorobiphenyl	68	40-140
2-Bromonaphthalene	70	40-140
O-Terphenyl-MS	105	40-140

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Method Blank Analysis Batch Quality Control

Analytical Method:131,VPH-18-2.1Analytical Date:02/23/23 20:31Analyst:BAD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons - V	Nestborough	Lab for s	ample(s):	01-03	Batch:	WG1748214-4
C5-C8 Aliphatics	ND		ug/l	100		100.
C9-C12 Aliphatics	ND		ug/l	100		100.
C9-C10 Aromatics	ND		ug/l	100		100.
C5-C8 Aliphatics, Adjusted	ND		ug/l	100		100.
C9-C12 Aliphatics, Adjusted	ND		ug/l	100		100.
Benzene	ND		ug/l	2.00		2.00
Toluene	ND		ug/l	2.00		2.00
Ethylbenzene	ND		ug/l	2.00		2.00
p/m-Xylene	ND		ug/l	2.00		2.00
o-Xylene	ND		ug/l	2.00		2.00
Methyl tert butyl ether	ND		ug/l	3.00		3.00
Naphthalene	ND		ug/l	4.00		4.00

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	92		70-130	
2,5-Dibromotoluene-FID	92		70-130	

Project Number: 22129 Lab Number: L2308720 Report Date: 02/24/23

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
EPH w/Targets via GCMS-SIM - We	estborough Lab Associated sa	mple(s): 01-03 Batch	: WG1746264-2 WG1746264	4-3	
C9-C18 Aliphatics	46	48	40-140	4	25
C19-C36 Aliphatics	79	79	40-140	0	25
C11-C22 Aromatics	86	73	40-140	16	25
Naphthalene	94	80	40-140	16	25
2-Methylnaphthalene	106	90	40-140	16	25
Acenaphthylene	105	88	40-140	18	25
Acenaphthene	99	85	40-140	15	25
Fluorene	106	90	40-140	16	25
Phenanthrene	103	87	40-140	17	25
Anthracene	107	91	40-140	16	25
Fluoranthene	116	99	40-140	16	25
Pyrene	118	101	40-140	16	25
Benzo(a)anthracene	104	86	40-140	19	25
Chrysene	108	97	40-140	11	25
Benzo(b)fluoranthene	106	92	40-140	14	25
Benzo(k)fluoranthene	103	85	40-140	19	25
Benzo(a)pyrene	115	96	40-140	18	25
Indeno(1,2,3-cd)Pyrene	116	94	40-140	21	25
Dibenzo(a,h)anthracene	113	94	40-140	18	25
Benzo(ghi)perylene	92	76	40-140	19	25

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720

Report Date: 02/24/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
EPH w/Targets via GCMS-SIM - Westboroug	h Lab Associate	d sample(s):	01-03 Batch:	WG1746264	-2 WG1746264-	3			

	LCS	LCSD		Acceptance
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria
Chloro-Octadecane	68	73		40-140
o-Terphenyl	86	75		40-140
2-Fluorobiphenyl	76	68		40-140
2-Bromonaphthalene	78	71		40-140
O-Terphenyl-MS	131	105		40-140
% Naphthalene Breakthrough	0	0		
% 2-Methylnaphthalene Breakthrough	0	0		

Project Number: 22129

Lab Number: L2308720

Report Date: 02/24/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Associ	iated sample(s)	: 01-03 Batch	n: WG1748214-2 WG17482	214-3			
C5-C8 Aliphatics	91		97	70-130	6		25	
C9-C12 Aliphatics	97		105	70-130	8		25	
C9-C10 Aromatics	101		110	70-130	9		25	
Benzene	104		111	70-130	7		25	
Toluene	102		109	70-130	7		25	
Ethylbenzene	105		113	70-130	7		25	
p/m-Xylene	105		112	70-130	6		25	
o-Xylene	104		113	70-130	8		25	
Methyl tert butyl ether	104		113	70-130	8		25	
Naphthalene	103		114	70-130	10		25	
1,2,4-Trimethylbenzene	101		110	70-130	9		25	
Pentane	79		82	70-130	4		25	
2-Methylpentane	96		101	70-130	5		25	
2,2,4-Trimethylpentane	100		107	70-130	7		25	
n-Nonane	97		104	30-130	7		25	
n-Decane	97		106	70-130	8		25	
n-Butylcyclohexane	99		107	70-130	8		25	

Surrogate	LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria	
2,5-Dibromotoluene-PID	98	108	70-130	
2,5-Dibromotoluene-FID	95	105	70-130	

METALS

L2308720

Project Name:	SAND PIT ROAD, TRURO
Project Number:	22129

Water

Lab ID: L2308720-01 Client ID: MW-1 Sample Location: TRURO, MA

Sample Depth:

Matrix:

	Report Date:	02/24/23
SAMPLE RESULTS		
	Date Collected:	02/15/23 15:00
	Date Received:	02/17/23
	Field Prep:	Refer to COC

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Antimony, Dissolved	ND		mg/l	0.0040	0.0020	1	02/21/23 15:00) 02/21/23 22:39	EPA 3005A	97,6020B	NTB
Arsenic, Dissolved	ND		mg/l	0.0050	0.0019	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Barium, Dissolved	0.0445		mg/l	0.0100	0.0021	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Beryllium, Dissolved	ND		mg/l	0.0005	0.0005	1	02/21/23 15:00) 02/21/23 22:39	EPA 3005A	97,6020B	NTB
Cadmium, Dissolved	ND		mg/l	0.0040	0.0010	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Chromium, Dissolved	ND		mg/l	0.0100	0.0021	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Lead, Dissolved	ND		mg/l	0.0100	0.0027	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	02/21/23 15:38	3 02/22/23 00:44	EPA 7470A	97,7470A	DMB
Nickel, Dissolved	0.0037	J	mg/l	0.0250	0.0024	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Selenium, Dissolved	ND		mg/l	0.0100	0.0035	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Silver, Dissolved	ND		mg/l	0.0070	0.0028	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Thallium, Dissolved	ND		mg/l	0.0010	0.0010	1	02/21/23 15:00) 02/21/23 22:39	EPA 3005A	97,6020B	NTB
Vanadium, Dissolved	ND		mg/l	0.0100	0.0020	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL
Zinc, Dissolved	0.0198	J	mg/l	0.0500	0.0021	1	02/21/23 15:00) 02/21/23 21:37	EPA 3005A	97,6010D	DHL

Project Name:	SAND PIT ROAD, TRURO
Project Number:	22129

Report Date: SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

02/24/23

02/17/23

L2308720

02/15/23 12:15

Refer to COC

Lab ID: L2308720-02 Client ID: MW-2 Sample Location: TRURO, MA

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Man	sfield Lab									
Antimony, Dissolved	ND		mg/l	0.0040	0.0020	1	02/21/23 15:00	02/21/23 22:44	EPA 3005A	97,6020B	NTB
Arsenic, Dissolved	ND		mg/l	0.0050	0.0019	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Barium, Dissolved	0.0130		mg/l	0.0100	0.0021	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Beryllium, Dissolved	ND		mg/l	0.0005	0.0005	1	02/21/23 15:00	02/21/23 22:44	EPA 3005A	97,6020B	NTB
Cadmium, Dissolved	ND		mg/l	0.0040	0.0010	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Chromium, Dissolved	ND		mg/l	0.0100	0.0021	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Lead, Dissolved	ND		mg/l	0.0100	0.0027	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	02/21/23 15:38	02/22/23 00:48	EPA 7470A	97,7470A	DMB
Nickel. Dissolved	ND		ma/l	0.0250	0.0024	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Selenium, Dissolved	ND		ma/l	0.0100	0.0035	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL
Silver, Dissolved	ND		ma/l	0.0070	0.0028	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97.6010D	DHI
Thallium Dissolved	ND		ma/l	0.0010	0.0010	1	02/21/23 15:00	02/21/23 22:44	EPA 3005A	97.6020B	NTB
Vanadium Dissolved	ND		ma/l	0.0100	0.0020	1	02/21/23 15:00	02/21/23 21:40	EPA 30054	97.6010D	DHI
Zinc, Dissolved	0.0116	J	mg/l	0.0500	0.0020	1	02/21/23 15:00	02/21/23 21:40	EPA 3005A	97,6010D	DHL

Project Name:	SAND PIT ROAD, TRURO
Project Number:	22129

Water

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

02/24/23

02/17/23

L2308720

02/15/23 13:30

Refer to COC

Lab ID: L2308720-03 Client ID: MW-3 Sample Location: TRURO, MA

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Mar	sfield Lab									
Antimony, Dissolved	ND		mg/l	0.0040	0.0020	1	02/21/23 15:00	02/21/23 22:50	EPA 3005A	97,6020B	NTB
Arsenic, Dissolved	ND		mg/l	0.0050	0.0019	1	02/21/23 15:00	02/21/23 21:43	EPA 3005A	97,6010D	DHL
Barium, Dissolved	0.0049	J	mg/l	0.0100	0.0021	1	02/21/23 15:00	02/21/23 21:43	EPA 3005A	97,6010D	DHL
Beryllium, Dissolved	ND		mg/l	0.0005	0.0005	1	02/21/23 15:00	02/21/23 22:50	EPA 3005A	97,6020B	NTB
Cadmium, Dissolved	ND		mg/l	0.0040	0.0010	1	02/21/23 15:00	02/21/23 21:43	EPA 3005A	97,6010D	DHL
Chromium, Dissolved	ND		mg/l	0.0100	0.0021	1	02/21/23 15:00) 02/21/23 21:43	EPA 3005A	97,6010D	DHL
Lead, Dissolved	ND		mg/l	0.0100	0.0027	1	02/21/23 15:00) 02/21/23 21:43	EPA 3005A	97,6010D	DHL
Mercury, Dissolved	ND		mg/l	0.0002	0.0002	1	02/21/23 15:38	3 02/22/23 00:51	EPA 7470A	97,7470A	DMB
Nickel, Dissolved	ND		mg/l	0.0250	0.0024	1	02/21/23 15:00) 02/21/23 21:43	EPA 3005A	97,6010D	DHL
Selenium, Dissolved	ND		mg/l	0.0100	0.0035	1	02/21/23 15:00) 02/21/23 21:43	EPA 3005A	97,6010D	DHL
Silver, Dissolved	ND		mg/l	0.0070	0.0028	1	02/21/23 15:00) 02/21/23 21:43	EPA 3005A	97,6010D	DHL
Thallium. Dissolved	ND		ma/l	0.0010	0.0010	1	02/21/23 15:00	02/21/23 22:50	EPA 3005A	97,6020B	NTB
Vanadium. Dissolved	ND		ma/l	0.0100	0.0020	1	02/21/23 15:00	02/21/23 21:43	EPA 3005A	97,6010D	DHL
Zinc. Dissolved	0.0104	J	ma/l	0.0500	0.0021	1	02/21/23 15:00	02/21/23 21:43	EPA 3005A	97,6010D	DHL
, 2.000.100	5.0.01	•		0.0000	5.00-1	•	52,21,2010.00			,	

Project Name:SAND PIT ROAD, TRUROProject Number:22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	Mansfield Lab	for sample(s):	01-03	Batch:	WG17468	55-1			
Arsenic, Dissolved	ND	mg/l	0.0050	0.0019	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Barium, Dissolved	ND	mg/l	0.0100	0.0021	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Cadmium, Dissolved	ND	mg/l	0.0040	0.0010	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Chromium, Dissolved	ND	mg/l	0.0100	0.0021	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Lead, Dissolved	ND	mg/l	0.0100	0.0027	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Nickel, Dissolved	ND	mg/l	0.0250	0.0024	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Selenium, Dissolved	ND	mg/l	0.0100	0.0035	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Silver, Dissolved	ND	mg/l	0.0070	0.0028	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Vanadium, Dissolved	ND	mg/l	0.0100	0.0020	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL
Zinc, Dissolved	ND	mg/l	0.0500	0.0021	1	02/21/23 15:00	02/21/23 21:27	97,6010D	DHL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Quali	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Mansfield Lab	for sample(s):	01-03	Batch:	WG1746858	-1			
Mercury, Dissolved	ND	mg/l	0.0002	0.0002	2 1	02/21/23 15:38	02/22/23 00:35	97,7470A	DMB

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab	for sample(s):	01-03	Batch:	WG1746859)-1			
Antimony, Dissolved	ND	mg/l	0.0040	0.0020) 1	02/21/23 15:00	02/21/23 22:00	97,6020B	NTB
Beryllium, Dissolved	ND	mg/l	0.0005	0.0005	5 1	02/21/23 15:00	02/21/23 22:00	97,6020B	NTB
Thallium, Dissolved	ND	mg/l	0.0010	0.0010) 1	02/21/23 15:00	02/21/23 22:00	97,6020B	NTB

Project Name:SAND PIT ROAD, TRUROProject Number:22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720 Report Date: 02/24/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
MCP Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01	-03 Batch	n: WG1746855-2	WG1746855-3		
Arsenic, Dissolved	104		104	80-120	0	20
Barium, Dissolved	100		102	80-120	2	20
Cadmium, Dissolved	105		105	80-120	0	20
Chromium, Dissolved	100		101	80-120	1	20
Lead, Dissolved	100		100	80-120	0	20
Nickel, Dissolved	100		100	80-120	0	20
Selenium, Dissolved	102		104	80-120	2	20
Silver, Dissolved	104		104	80-120	0	20
Vanadium, Dissolved	104		105	80-120	1	20
Zinc, Dissolved	102		103	80-120	1	20
MCP Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01	-03 Batch	n: WG1746858-2	WG1746858-3		
Mercury, Dissolved	96		102	80-120	6	20
MCP Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01	-03 Batch	n: WG1746859-2	WG1746859-3		
Antimony, Dissolved	92		93	80-120	1	20
Beryllium, Dissolved	104		105	80-120	1	20
Thallium, Dissolved	87		86	80-120	1	20

Project Name: SAND PIT ROAD, TRURO Project Number: 22129

Serial_No:02242317:00 *Lab Number:* L2308720 *Report Date:* 02/24/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2308720-01A	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-01B	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-01C	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-01D	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-01E	Vial HCl preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-01F	Vial HCl preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-01G	Plastic 250ml HNO3 preserved	A	<2	<2	5.9	Y	Absent		MCP-CD-6010S-10(180),MCP-BE-6020S- 10(180),MCP-7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S-10(180),MCP-ZN- 6010S-10(180),MCP-CR-6010S-10(180),MCP- AS-6010S-10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S-10(180),MCP-PB- 6010S-10(180),MCP-SE-6010S-10(180),MCP- V-6010S-10(180),MCP-NI-6010S-10(180)
L2308720-01H	Amber 120ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-011	Amber 120ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-01J	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-01K	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-01L	Amber 1000ml HCI preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14),EPH-MS-20(14)
L2308720-01M	Amber 1000ml HCI preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14),EPH-MS-20(14)
L2308720-02A	Vial HCl preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-02B	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-02C	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-02D	Vial HCl preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-02E	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-02F	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)

Project Name:SAND PIT ROAD, TRUROProject Number:22129

Serial_No:02242317:00 *Lab Number:* L2308720 *Report Date:* 02/24/23

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2308720-02G	Plastic 250ml HNO3 preserved	A	<2	<2	5.9	Y	Absent		MCP-BE-6020S-10(180),MCP-CD-6010S- 10(180),MCP-7470S-10(28),MCP-SB-6020S- 10(180),MCP-AG-6010S-10(180),MCP-ZN- 6010S-10(180),MCP-TL-6020S-10(180),MCP- CR-6010S-10(180),MCP-AS-6010S- 10(180),MCP-BA-6010S-10(180),MCP-PB- 6010S-10(180),MCP-SE-6010S-10(180),MCP- V-6010S-10(180),MCP-NI-6010S-10(180)
L2308720-02H	Amber 120ml unpreserved	A	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-02I	Amber 120ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-02J	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-02K	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-02L	Amber 1000ml HCl preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14),EPH-MS-20(14)
L2308720-02M	Amber 1000ml HCl preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14),EPH-MS-20(14)
L2308720-03A	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-03B	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-03C	Vial HCI preserved	А	NA		5.9	Y	Absent		MCP-8260-21(14)
L2308720-03D	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-03E	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-03F	Vial HCI preserved	А	NA		5.9	Y	Absent		VPH-DELUX-18(14)
L2308720-03G	Plastic 250ml HNO3 preserved	A	<2	<2	5.9	Υ	Absent		MCP-CD-6010S-10(180),MCP-BE-6020S- 10(180),MCP-7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S-10(180),MCP-ZN- 6010S-10(180),MCP-AS-6010S-10(180),MCP- CR-6010S-10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S-10(180),MCP-PB- 6010S-10(180),MCP-V-6010S-10(180),MCP- NI-6010S-10(180),MCP-SE-6010S-10(180)
L2308720-03H	Amber 120ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-03I	Amber 120ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8082(7)
L2308720-03J	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-03K	Amber 250ml unpreserved	А	7	7	5.9	Y	Absent		HOLD-8270(7)
L2308720-03L	Amber 1000ml HCI preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14), EPH-MS-20(14)
L2308720-03M	Amber 1000ml HCI preserved	А	<2	<2	5.9	Y	Absent		EPHD-GC-20(14), EPH-MS-20(14)

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720

Report Date: 02/24/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720

Report Date: 02/24/23

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of th
original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308720

Report Date: 02/24/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:SAND PIT ROAD, TRUROProject Number:22129

 Lab Number:
 L2308720

 Report Date:
 02/24/23

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 131 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.
- 135 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.
- 141 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA and IIB, November 2021.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

															Se	erial_No	0:02242317:00	
Асрна	CHA	AIN OF C	USTO	DY ,	AGE	OF	Dat	e Rec'd	in La	ь: б	3)r	שור	3		ALPH	A Job #	1:13308730	5
	120 Earbor Ph	Proje	ct Informat	ion			Re	port Ini	forma	ation	- Data	a Deliv	erabl	es	Billing	Inform	ation	
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 20 Tel: 508-822-9	0 02048 Project 300	t Name: Sour	nd Pit R	oad , Tr	uro	X	ADEx		X E	MAIL				🗆 Same	as Clien	t info PO #:	
Client Informatio	n	Projec	t Location: T	ruro,	MA		Re	gulator	y Re	quire	ment	s &	Proj	ect In	formati	on Requ	uirements	
Client: HOrsley	Witten Grow) p Projec	:#: 2212	9			X IY	es 🗆 No	MA I Matr	MCP A	nalytic e Reg	al Methuired or	ods 1 this \$	SDG?	Q Ye (Require	es 🛛 No d for MC	CT RCP Analytical Method P Inorganics)	5
Address: 90 Rol	ute 6A	Projec	t Manager: R	Nan	Massa		XXY	es 🗆 No	GW'	1 Stan	dards	Info Re	quirec	for Me	etals & E	PH with ¹	Targets)	
Sandwich, MA 02563 AL			IA Quote #:		1 10100.0		Other State /Fed Program Criteria											
Phone: 781-2	43-1527	Turr	-Around Tir	ne			1.11	1	/		13 / 2	12/	2	1	11	77		
Email: pMassa@horsleywilten.com Additional Project Information: RCGW-1 criteria			Standard RUSH (only confirmed if pre-approved!) Date Due:				ANALYO	0624 D524.2	624 D 524.2 D PAH 13 DOUCE 14 D			Targets D Ranoa	N 1.1	U Fingerprint			SAMPLE INFO Filtration	TOTAL #
Analyzed for ALPHA Lab ID ((Lab Use Only)	EPH w/ PAI	IS , dissol Vi	ed MCP	14 me	Sample	Sampler	Voc: No.	SVOC: D ABN	NETALS: DMCP	EPH: N.C.	PH:NG LEY PI	D PCB D PEO	rH: DQuant On				Lab to do Preservation Lab to do Sample Commente	BOTTLES
OFTED DI	MAN		2/15/23	ISO0	gw	CA				1			1	+		(-(-	dissived mcp14	3
isno na	10100-1	13 5 3	2/15/23	1215	au)	CA	X		-		$\overline{\mathbf{v}}$	-					dissolved mup 14	_
100 00	MW-L		7/10/22	12:20	au	00	1-			~	~		-			2	diccolved maping	-
	MW-0		71923	1000	gu	Cry	~				~						EPH WI PMHS	
Container Type P= Plastic A= Amber glass V= Viat	Preservative A= None B= HCl C= HNO ₃			-	Conta Pre	iner Type eservative	B	P		A	VB	-	-					
G= Glass B= Bacteria cup C= Cube 0= Other E= Encore D= BOD Bottle Page 55 of 59	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ Cl K= Zn Acetate	Relin Carol a Fire was	quished By:		Date 2/11/1 2/11/19	-/Time 3 1/:20 5 1630	1 8	ylie	Recei Da				21	Date/ 1712 17	Fime > 1125 11630	All san Alpha' See re	nples submitted are subject s Terms and Conditions. everse side.	to

Method Blank Summary Form 4 Volatiles

Client Project Name Lab Sample ID Instrument ID	: Horseley & Witten, Inc. : SAND PIT ROAD, TRURO : WG1746852-5 : QUIMBY	Lab Number Project Number Lab File ID	: L2308720 : 22129 : VQ230221A05
Matrix	: WATER	Analysis Date	: 02/21/23 06:35
Client Samp	ole No.	Lab Sample ID	Analysis Date
WG1746852-3	LCS	WG1746852-3	02/21/23 05:04
WG1746852-4	LCSD	WG1746852-4	02/21/23 05:27
MW-1		L2308720-01	02/21/23 12:38
MW-2		L2308720-02	02/21/23 13:01
MW-3		L2308720-03	02/21/23 13:23

Calibration Verification Summary Form 7 Volatiles

Client:Project Name:Instrument ID:Lab File ID:Sample No:Channel:	: Horseley & Witten, Inc. : SAND PIT ROAD, TRURO : QUIMBY : VQ230221A01 : WG1746852-2 :		Lab Number Project Numb Calibration Da Init. Calib. Da Init. Calib. Tin	: L er : 2 ate : 0 te(s) : 0 nes : 0	2308720 2129 2/21/23 05: 2/09/23 4:21	04 02/09/2: 07:00	3
Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	89	0
Dichlorodifluoromethane	0.25	0.213	-	14.8	20	74	0
Chloromethane	10	7.241	-	27.6*	20	60	0
Vinyl chloride	0.263	0.255	-	3	20	84	0
Bromomethane	10	9.716	-	2.8	20	78	0
Chloroethane	0.158	0.154	-	2.5	20	81	0
Trichlorofluoromethane	0.351	0.361	-	-2.8	20	87	0
Ethyl ether	0.089	0.091	-	-2.2	20	84	0
1,1-Dichloroethene	0.191	0.192	-	-0.5	20	86	0
 Carbon disulfide	0.55	0.558	-	-1.5	20	87	0
Freon-113	0.208	0.221	-	-0.3	20	89	0
	10	10.799	-	-8	20	99	0
	10	10.507	-	-5.1	20	80	0
Acetone	10	12.302	-	-23"	20	104	0
trans-1,2-Dichloroethene	0.198	0.206	-	-4	20	88	0
 Methyl acetate	0.108	0.11	•	-1.9	20	90	0
tert Butul clockel	0.418	0.403	-	3.0	20	88	0
tert-Butyl alconol	0.01	0.011	-	-10	20	94	0
1 1 Disbloresthere	0.775	0.761	-	1.8	20	89	0
Helethene	0.182	0.400	-	-3.2	20	00	0
Acrulopitrilo	0.182	0.192	-	-5.5	20	90	0
	0.051	0.053	-	-3.9	20	90	0
Vinvl acotato	0.01	0.381		4.0	20	00	0
 villyl deeldle	0.263	0.449	-	-2	20	91	0
2 2-Dichloropropage	0.425	0.271		-3.8	20	88	0
 Bromochloromothano	0.116	0.110		-0.0	20	88	0
Cyclobeyane	0.463	0.119		-2.0	20	00	0
Chloroform	0.427	0.400		-3.4	20	90	0
Ethyl acetate	0.141	0.136		3 5	20	92	0
 Carbon tetrachloride	0.341	0.356		-4.4	20	87	0
 Tetrahydrofuran	0.054	0.053		1.9	20	88	0
Dibromofluoromethane	0.28	0.284	-	-1.4	20	88	0
1 1 1-Trichloroethane	0.375	0.399	-	-6.4	20	91	0
2-Butanone	0.068	0.062	-	8.8	20	86	0
 1.1-Dichloropropene	0.304	0.325	-	-6.9	20	93	0
Benzene	0.907	0.936	-	-3.2	20	92	0
tert-Amyl methyl ether	0.507	0.47	-	7.3	20	86	0
1.2-Dichloroethane-d4	0.311	0.329	-	-5.8	20	89	0
1.2-Dichloroethane	0.314	0.323	-	-2.9	20	88	0
Methyl cyclohexane	0.414	0.404	-	2.4	20	88	0
Trichloroethene	0.24	0.241	-	-0.4	20	94	0
Dibromomethane	0.128	0.126	-	1.6	20	85	0
 							-

* Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client: HProject Name: SInstrument ID: QLab File ID: VSample No: WChannel:	orseley & Witten, Inc. AND PIT ROAD, TRURO UIMBY Q230221A01 /G1746852-2		Lab Number Project Numbe Calibration Da Init. Calib. Dat Init. Calib. Tim	: L2 er : 22 te : 02 e(s) : 02 nes : 04	2308720 2129 2/21/23 05: 2/09/23 1:21	04 02/09/23 07:00	3
Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dichloropropane	0.24	0.248	-	-3.3	20	91	0
2-Chloroethyl vinyl ether	0.109	0.101	-	7.3	20	83	0
Bromodichloromethane	0.318	0.327	-	-2.8	20	89	0
1,4-Dioxane	0.00128	0.00123*	-	3.9	20	78	0
cis-1,3-Dichloropropene	0.366	0.361	-	1.4	20	88	0
Chlorobenzene-d5	1	1	-	0	20	86	0
Toluene-d8	1.331	1.354	-	-1.7	20	87	0
Toluene	0.742	0.773	-	-4.2	20	89	0
4-Methyl-2-pentanone	0.059	0.056	-	5.1	20	85	0
Tetrachloroethene	0.295	0.307	-	-4.1	20	90	0
trans-1,3-Dichloropropene	0.413	0.408	-	1.2	20	88	0
Ethyl methacrylate	0.245	0.251	-	-2.4	20	85	0
1,1,2-Trichloroethane	0.174	0.172*	-	1.1	20	89	0
Chlorodibromomethane	0.272	0.258	-	5.1	20	84	0
1,3-Dichloropropane	0.378	0.379	-	-0.3	20	88	0
1,2-Dibromoethane	0.202	0.2	-	1	20	87	0
2-Hexanone	0.113	0.124	-	-9.7	20	96	0
Chlorobenzene	0.838	0.874	-	-4.3	20	88	0
Ethylbenzene	1.436	1.535	-	-6.9	20	89	0
1,1,1,2-Tetrachloroethane	0.287	0.275	-	4.2	20	86	0
p/m Xylene	0.571	0.594	-	-4	20	86	0
o Xylene	0.549	0.57	-	-3.8	20	86	0
Styrene	0.913	0.97	-	-6.2	20	86	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	79	0
Bromotorm	0.276	0.282	-	-2.2	20	82	0
Isopropylbenzene	2.784	3.161	-	-13.5	20	87	0
4-Bromofluorobenzene	0.937	1.04	-	-11	20	87	0
Bromobenzene	0.638	0.712	-	-11.6	20	86	0
n-Propylbenzene	3.306	3.772	-	-14.1	20	86	0
 1,4-Dichlorobutane	0.708	0.746	-	-5.4	20	85	0
1, 1, 2, 2- 1 etrachioroethane	0.436	0.453	-	-3.9	20	83	0
 4-Ethyltoluene	2.852	3.06	-	-7.3	20	81	0
2-Chiorotoluene	2.310	2.394	-	-11.9	20	00	0
1,3,5-1 rimetnyibenzene	2.410	2.383	-	1.4	20	/0	0
trans 1.4 Disblars 2 buton	0.307	0.303	-	-4.4	20	70	0
4 Chlorotoluono	2.096	0.152	-	-0.7	20	19	0
 tert-Butylbenzene	2.000	2.341	-	-12.2	20	84	0
 1.2.4-Trimethylbonzonc	2.032	2.31	-	-10.4	20	0 4 77	0
soc-Butylbonzono	2.347	2.343	-	-11 6	20	ΩΛ	0
 n-leopropyltoluopo	2 608	2.420	-	-11.0	20	78	0
	1 202	1 /11	-	-4.3	20	22	0
	1 311	1 306	-	-1.3	20	82	0
,Dicilioiobelizelle	1.311	1.550	-	-0.3	20	02	U

* Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Hors Project Name : SAN Instrument ID : QUIM Lab File ID : VQ2 Sample No : WG1 Channel :	eley & Witten, Inc. D PIT ROAD, TRU MBY 30221A01 746852-2	RO	Lab Number Project Numb Calibration Da Init. Calib. Da Init. Calib. Tin	: L er : 2 ate : 0 te(s) : 0 nes : 0	2308720 2129 2/21/23 05: 2/09/23 4:21	04 02/09/2: 07:00	3
Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
p-Diethylbenzene	1.626	1.604	-	1.4	20	76	0
n-Butylbenzene	2.309	2.407	-	-4.2	20	78	0
1,2-Dichlorobenzene	1.201	1.291	-	-7.5	20	83	0
1,2,4,5-Tetramethylbenzene	2.349	2.315	-	1.4	20	82	0
1,2-Dibromo-3-chloropropan	0.073	0.071	-	2.7	20	76	0
1,3,5-Trichlorobenzene	0.96	0.951	-	0.9	20	82	.01
Hexachlorobutadiene	0.388	0.389	-	-0.3	20	80	0
1,2,4-Trichlorobenzene	0.844	0.845	-	-0.1	20	80	0
Naphthalene	1.649	1.703	-	-3.3	20	80	0
1,2,3-Trichlorobenzene	0.747	0.751	-	-0.5	20	78	0

ANALYTICAL REPORT

Lab Number:	L2308730
Client:	Horseley & Witten, Inc.
	Sextant Hill Office Park
	90 Route 6A
	Sandwich, MA 02563
ATTN:	Brian Massa
Phone:	(508) 833-6600
Project Name:	SAND PIT ROAD, TRURO
Project Number:	22129
Report Date:	03/06/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:03062310:45

Project Name:SAND PIT ROAD, TRUROProject Number:22129

 Lab Number:
 L2308730

 Report Date:
 03/06/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2308730-01	MW-1	WATER	TRUR, MA	02/15/23 15:00	02/17/23
L2308730-02	MW-2	WATER	TRUR, MA	02/15/23 12:15	02/17/23
L2308730-03	MW-3	WATER	TRUR, MA	02/15/23 13:30	02/17/23

Project Name:SAND PIT ROAD, TRUROProject Number:22129

Lab Number: L2308730 Report Date: 03/06/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SAND PIT ROAD, TRURO Project Number: 22129
 Lab Number:
 L2308730

 Report Date:
 03/06/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L2308730-01: The sample was centrifuged and decanted prior to extraction due to sample matrix. L2308730-01: The MeOH fraction of the extraction is reported for perfluorooctanesulfonamide (fosa) due to better extraction efficiency of the perfluoro[13c8]octanesulfonamide (m8fosa) Extracted Internal Standard. L2308730-02: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and
belief and based upon my personal inquiry of those responsible for providing the information contained
in this analytical report, such information is accurate and complete. This certificate of analysis is not
complete unless this page accompanies any and all pages of this report.

Alycia Mogayzel

Authorized Signature:

Title: Technical Director/Representative

Date: 03/06/23

ORGANICS

SEMIVOLATILES

			Serial_No:	03062310:45
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308730
Project Number:	22129		Report Date:	03/06/23
		SAMPLE RESULTS		
Lab ID:	L2308730-01		Date Collected:	02/15/23 15:00
Client ID:	MW-1		Date Received:	02/17/23
Sample Location:	TRUR, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	02/20/23 10:40
Analytical Date:	02/21/23 13:53			
Analyst:	AC			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	5.90		ng/l	1.95	0.398	1				
Perfluoropentanoic Acid (PFPeA)	5.46		ng/l	1.95	0.386	1				
Perfluorobutanesulfonic Acid (PFBS)	10.9		ng/l	1.95	0.232	1				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.95	0.441	1				
Perfluorohexanoic Acid (PFHxA)	15.8		ng/l	1.95	0.320	1				
Perfluoropentanesulfonic Acid (PFPeS)	10.6		ng/l	1.95	0.239	1				
Perfluoroheptanoic Acid (PFHpA)	32.6		ng/l	1.95	0.220	1				
Perfluorohexanesulfonic Acid (PFHxS)	48.8		ng/l	1.95	0.367	1				
Perfluorooctanoic Acid (PFOA)	9.18		ng/l	1.95	0.230	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.95	1.30	1				
Perfluoroheptanesulfonic Acid (PFHpS)	5.11		ng/l	1.95	0.671	1				
Perfluorononanoic Acid (PFNA)	0.620	J	ng/l	1.95	0.304	1				
Perfluorooctanesulfonic Acid (PFOS)	248		ng/l	1.95	0.491	1				
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.95	0.296	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.95	1.18	1				
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.95	1.09	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.95	0.632	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.95	0.254	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.95	0.956	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.95	0.784	1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.95	0.363	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.95	0.319	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.95	0.242	1				

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	TRUR, MA				Field Prep:		Not Specified
Client ID:	MW-1				Date Receive	ed:	02/17/23
Lab ID:	L2308730-01				Date Collect	ed:	02/15/23 15:00
		SAMF	PLE RESULTS	5			
Project Number:	22129				Report Dat	te:	03/06/23
Project Name:	SAND PIT ROAD, TRUR	0			Lab Numb	er:	L2308730
					Seria	al_No	0:03062310:45

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	90	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	100	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	93	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	75	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	87	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	79	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	84	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	82	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	84	55-137
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	79	22-136

			Serial_No:	03062310:45
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308730
Project Number:	22129		Report Date:	03/06/23
		SAMPLE RESULTS		
Lab ID:	L2308730-01		Date Collected:	02/15/23 15:00
Client ID:	MW-1		Date Received:	02/17/23
Sample Location:	TRUR, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	02/20/23 10:40
Analytical Date:	02/21/23 20:18			
Analyst:	JW			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.95	0.566	1
Surrogate (Extracted Internal Standard)			% Recovery	Qualifier	Acce Cr	ptance iteria
Perfluoro[13C8]Octanesulfonamide (M8FOSA)			58		:	5-112

			Serial_No:	03062310:45
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308730
Project Number:	22129		Report Date:	03/06/23
		SAMPLE RESULTS		
Lab ID:	L2308730-02		Date Collected:	02/15/23 12:15
Client ID:	MW-2		Date Received:	02/17/23
Sample Location:	TRUR, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	ALPHA 23528
Analytical Method:	134.LCMSMS-ID		Extraction Date:	02/20/23 10:40
Analytical Date:	02/21/23 14:09			
Analyst:	AC			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	2.34		ng/l	1.83	0.373	1				
Perfluoropentanoic Acid (PFPeA)	1.05	J	ng/l	1.83	0.362	1				
Perfluorobutanesulfonic Acid (PFBS)	0.336	J	ng/l	1.83	0.217	1				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.83	0.413	1				
Perfluorohexanoic Acid (PFHxA)	1.28	J	ng/l	1.83	0.300	1				
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.83	0.224	1				
Perfluoroheptanoic Acid (PFHpA)	1.13	J	ng/l	1.83	0.206	1				
Perfluorohexanesulfonic Acid (PFHxS)	0.800	J	ng/l	1.83	0.344	1				
Perfluorooctanoic Acid (PFOA)	1.51	J	ng/l	1.83	0.216	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.83	1.22	1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.83	0.628	1				
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.83	0.285	1				
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.83	0.460	1				
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.83	0.278	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.83	1.11	1				
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.83	1.02	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	1.83	0.592	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.83	0.238	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.83	0.895	1				
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.83	0.530	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83	0.734	1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.83	0.340	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.83	0.299	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83	0.226	1				

Parameter		Result	Qualifier	Units	KL	MDL	Dilution Factor
-			o				
Sample Depth:							
Sample Location:	TRUR, MA				Field Prep	:	Not Specified
Client ID:	MW-2				Date Rece	ived:	02/17/23
Lab ID:	L2308730-02				Date Colle	cted:	02/15/23 12:15
		SAMP	LE RESULTS	5			
Project Number:	22129				Report D	ate:	03/06/23
Project Name:	SAND PIT ROAD, TRUR	0			Lab Num	ber:	L2308730
					Se	erial_No	03062310:45

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	52	Q	58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	57	Q	62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	99		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	73		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	42	Q	57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	41	Q	60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	42	Q	62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	78		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	37	Q	59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	94		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	41	Q	62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	75		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	50		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	51	Q	55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6		5-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	50		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	57		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	76		22-136	

			Serial_No:	03062310:45
Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308730
Project Number:	22129		Report Date:	03/06/23
		SAMPLE RESULTS		
Lab ID:	L2308730-03		Date Collected:	02/15/23 13:30
Client ID:	MW-3		Date Received:	02/17/23
Sample Location:	TRUR, MA		Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 134,LCMSMS-ID 02/21/23 14:26 AC		Extraction Method: Extraction Date:	ALPHA 23528 02/20/23 10:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	5.76		ng/l	1.88	0.383	1			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.88	0.372	1			
Perfluorobutanesulfonic Acid (PFBS)	1.12	J	ng/l	1.88	0.224	1			
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.88	0.424	1			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.88	0.308	1			
Perfluoropentanesulfonic Acid (PFPeS)	0.237	J	ng/l	1.88	0.230	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.88	0.212	1			
Perfluorohexanesulfonic Acid (PFHxS)	1.29	J	ng/l	1.88	0.353	1			
Perfluorooctanoic Acid (PFOA)	0.639	J	ng/l	1.88	0.222	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.88	1.25	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.88	0.646	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.88	0.293	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.88	0.473	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.88	0.286	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.88	1.14	1			
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.88	1.05	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	1.88	0.608	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.88	0.244	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.88	0.920	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.88	0.545	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.88	0.755	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.88	0.349	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.88	0.307	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.88	0.233	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	TRUR, MA				Field Prep:		Not Specified
Client ID:	MW-3				Date Receiv	ved:	02/17/23
Lab ID:	L2308730-03				Date Collec	ted:	02/15/23 13:30
		SAMF	PLE RESULTS	5			
Project Number:	22129				Report Da	te:	03/06/23
Project Name:	SAND PIT ROAD, TRUR	0			Lab Numb	ber:	L2308730
	Serial_No:03						0:03062310:45

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	64	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	75	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	88	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	61	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	63	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	107	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	66	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	87	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	60	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	94	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	62	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	75	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	15	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	71	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	82	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	88	22-136

Project Name:SAND PIT ROAD, TRUROLab Number:Project Number:22129Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:134,LCMSMS-IDAnalytical Date:02/21/23 08:38Analyst:AC

Extraction Method: ALPHA 23528 Extraction Date: 02/20/23 10:40

L2308730

03/06/23

arameter	Result	Qualifier	Units	RL	MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01-03 Batch:	WG1746338-
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
1H,1H,2H,2H-Perfluorohexanesulfonic Acic (4:2FTS)	ND		ng/l	2.00	0.452	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.328	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00	0.245	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acic (8:2FTS)	ND		ng/l	2.00	1.21	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00	1.12	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	: ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	

Project Name:	SAND PIT ROAD, TRURO	Lab Number:	L2308730			
Project Number:	22129	Report Date:	03/06/23			
Method Blank Analysis Batch Quality Control						

Method Blank Ana	lysis
Batch Quality Cont	rol

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	02/21/23 08:38	Extraction Date:	02/20/23 10:40
Analyst:	AC		

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotope	e Dilution - I	Mansfield L	ab for sam	ple(s):	01-03	Batch:	WG1746338-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
		/
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	107	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	96	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	100	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	97	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	106	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	99	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	18	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	73	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	106	22-136

Serial_No:03062310:45

Project Name:	SAND PIT ROAD, TRURO		Lab Number:	L2308730	
Project Number:	22129		Report Date:	03/06/23	
		Method Blank Analysis Batch Quality Control			
Analytical Method: Analytical Date: Analyst:	134,LCMSMS-ID 02/21/23 20:05 JW		Extraction Method: Extraction Date:	ALPHA 23528 02/20/23 10:40	

ition - N	Mansfield La	ab for sam	ple(s):	01-03	Batch:	WG1746338-1
ND		ng/l	2.00		0.580	
	tion - N ND	tion - Mansfield L ND	tion - Mansfield Lab for sam	tion - Mansfield Lab for sample(s): ND ng/l 2.00	tion - Mansfield Lab for sample(s): 01-03 ND ng/l 2.00	tion - Mansfield Lab for sample(s): 01-03Batch:NDng/l2.000.580

Surrageta (Extracted Internal Standard)	% Decovery	A	cceptance	
Surroyale (Extracted internal Standard)	%Recovery	Quaimer	Gineria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	59		5-112	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 22129

Lab Number: L2308730 Report Date: 03/06/23

LCSD LCS %Recovery RPD %Recovery %Recoverv Limits RPD Limits Parameter Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-03 Batch: WG1746338-2 Perfluorobutanoic Acid (PFBA) 94 -67-148 -30 Perfluoropentanoic Acid (PFPeA) 93 63-161 30 --Perfluorobutanesulfonic Acid (PFBS) 65-157 30 94 --1H,1H,2H,2H-Perfluorohexanesulfonic 105 37-219 30 --Acid (4:2FTS) Perfluorohexanoic Acid (PFHxA) 96 69-168 30 --Perfluoropentanesulfonic Acid (PFPeS) 104 52-156 30 --Perfluoroheptanoic Acid (PFHpA) 95 58-159 30 --Perfluorohexanesulfonic Acid (PFHxS) 116 69-177 30 --Perfluorooctanoic Acid (PFOA) 96 63-159 30 --1H,1H,2H,2H-Perfluorooctanesulfonic 113 49-187 30 -_ Acid (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) 61-179 30 106 --Perfluorononanoic Acid (PFNA) 102 68-171 30 --Perfluorooctanesulfonic Acid (PFOS) 114 52-151 30 --Perfluorodecanoic Acid (PFDA) 93 63-171 30 _ -1H,1H,2H,2H-Perfluorodecanesulfonic 101 56-173 30 --Acid (8:2FTS) Perfluorononanesulfonic Acid (PFNS) 48-150 109 30 --N-Methyl 60-166 30 105 --Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) 91 60-153 30 --Perfluorodecanesulfonic Acid (PFDS) 106 38-156 30 --Perfluorooctanesulfonamide (FOSA) 92 46-170 30 --N-Ethyl Perfluorooctanesulfonamidoacetic 108 45-170 30 --Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) 87 67-153 30 --

Lab Control Sample Analysis Batch Quality Control

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

 Lab Number:
 L2308730

 Report Date:
 03/06/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	 Mansfield Lab 	Associated s	sample(s): 01-03	Batch:	WG1746338-2				
Perfluorotridecanoic Acid (PFTrDA)	113		-		48-158	-		30	
Perfluorotetradecanoic Acid (PFTA)	104		-		59-182	-		30	

	LCS	_	LCSD	_	Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	100				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	110				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	100				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	98				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	106				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	96				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	110				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	81				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	97				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21				5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	77				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	109				22-136

Lab Control Sample Analysis

ROAD, TRURO	Batch Quality Control	Lab Number:	L2308730
		Report Date:	03/06/23

Parameter	LCS %Recovery	Qual	LCSE %Recov) very	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s):	01-03	Batch:	WG1746338-2				
Perfluorooctanesulfonamide (FOSA)	90		-			46-170	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	64		5-112	

Project Name:

Project Number: 22129

SAND PIT

Matrix Spike Analysis Batch Quality Control

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129 Lab Number: L2308730 Report Date: 03/06/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	sotope Dilution	n - Mansfield	Lab Assoc	iated sample(s)	: 01-03	QC Batch	ID: WG1746338	8-3	QC Sample:	L230844	43-02	Client ID: MS
Perfluorobutanoic Acid (PFBA)	3.60	38.1	39.4	94		-	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	2.88	38.1	38.4	93		-	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	33.8	32.4	96		-	-		65-157	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	35.7	39.1	110		-	-		37-219	-		30
Perfluorohexanoic Acid (PFHxA)	1.08J	38.1	36.3	92		-	-		69-168	-		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	35.8	36.9	103		-	-		52-156	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	38.1	36.4	96		-	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	34.8	41.4	119		-	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	ND	38.1	35.1	92		-	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	36.2	40.6	112		-	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	36.3	38.7	107		-	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	ND	38.1	40.6	107		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	35.3	37.6	106		-	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	ND	38.1	36.8	97		-	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	36.5	38.0	104		-	-		56-173	-		30
Perfluorononanesulfonic Acid (PFNS)	ND	36.6	37.3	102		-	-		48-150	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	38.1	38.3	101		-	-		60-166	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	38.1	36.8	97		-	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	36.8	40.4	110		-	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	ND	38.1	34.5F	91		-	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic	ND	38.1	38.7F	102		-	-		45-170	-		30
Perfluorododecanoic Acid (PFDoA)	ND	38.1	34.2	90		-	-		67-153	-		30

Matrix Spike Analysis

Project Name: Project Number:	SAND PIT ROA 22129	AD, TRURO			Batch G	uality Cor	ntrol		Lab Nun Report D	nber: Date:	L2 03	2308730 3/06/23	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Porfluoringtod Allay Agide	a hy leatona Dilutia	n Manafiala		aiotod compla(a)	01 02	OC Potob		0.2	OC Sampla:	1 22001	12 02		

Sample	pe Dilutior	I - Marishelu Lab	ASSOCIA	ateu sample(s).	01-03	QC Batch ID.	VVG1740330-3	QC Sample. L	2300443-02	Client ID. MS	
Perfluorotridecanoic Acid (PFTrDA)	ND	38.1	44.5	117		-	-	48-158	-	30	
Perfluorotetradecanoic Acid (PFTA)	ND	38.1	41.1	108		-	-	59-182	-	30	

	MS	S	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	92				10-162	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	142				12-142	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	110				14-147	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70				27-126	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84				24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	81				55-137	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87				62-124	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80				57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84				60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	112				71-134	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	88				48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	99				22-136	
Perfluoro[13C4]Butanoic Acid (MPFBA)	88				58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	103				62-163	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	18				5-112	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98				69-131	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89				62-129	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80				59-139	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103				70-131	

Lab Duplicate Analysis Batch Quality Control

Project Name: SAND PIT ROAD, TRURO

Lab Number: L2308730 Report Date: 03/06/23

Project Number: 22129

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - ID: DUP Sample	Mansfield Lab Associated sar	mple(s): 01-03 QC	Batch ID: WG174	6338-4 (QC Sample: L2308443-03 Client
Perfluorobutanoic Acid (PFBA)	3.54	3.59	ng/l	1	30
Perfluoropentanoic Acid (PFPeA)	2.51	2.58	ng/l	3	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	1.06J	0.540J	ng/l	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	ND	ND	ng/l	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: SAND PIT ROAD, TRURO

Report Date: 03

Lab Number:

r: L2308730 e: 03/06/23

Project Number: 22129

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution ID: DUP Sample	- Mansfield Lab Associated sar	nple(s): 01-03	QC Batch ID: WG174	6338-4 C	QC Sample: L2308443-03 Clie	ent
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30	

Surrogate (Extracted Internal Standard)	%Recovery (Qualifier %Recovery	Acceptance Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	87	85	58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102	100	62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102	103	70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	132	125	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	78	77	57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84	81	60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109	108	71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87	86	62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	93	91	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80	75	59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96	94	69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82	82	62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	82	80	10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	80	89	24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85	88	55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21	12	5-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	85	84	27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	86	89	48-131	

Project Name: Project Number:	SAND PIT ROAD, TRURO 22129		Li	Batch Qu	cate Ana ality Contr	alysis ^{ol}		Lab Numb Report Da	per: ate:	L2308730 03/06/23
Parameter		Native	Sample	Duplicate S	ample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acid ID: DUP Sample	s by Isotope Dilution - Mansfi	eld Lab	Associated samp	ole(s): 01-03	QC Batc	h ID: W	G1746338-4 (QC Sample:	L2308443	-03 Client
								Acceptance	е	

- -

Surrogate (Extracted Internal Standard)	%Recovery Qualit	ier %Recovery Qualifier	Criteria	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	95	96	22-136	

Project Name: SAND PIT ROAD, TRURO Project Number: 22129

Serial_No:03062310:45 *Lab Number:* L2308730 *Report Date:* 03/06/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2308730-01A	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)
L2308730-01B	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)
L2308730-02A	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)
L2308730-02B	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)
L2308730-03A	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)
L2308730-03B	Plastic 250ml unpreserved	А	NA		5.9	Y	Absent		A2-537-ISOTOPE(28)

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Serial_No:03062310:45 Lab Number: L2308730 Report Date: 03/06/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
	DEODA	
	PFODA	16517-11-6
		67905-19-5
	PFTA/PFTEDA	376-06-7
Perfluorotridecanoic Acid	PF I I DA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PENA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
1H.1H.2H.2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H.1H.2H.2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H 1H 2H 2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H 1H 2H 2H-Perfluorobevanesulfonic Acid	4.2FTS	757124-72-4
		101124124
Perfluorooctanesultonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NETFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERELUOROETHER/POLYETHER CARBOXYLIC ACIDS (PEPCAs)		
Perfluoro-3-Methowyropapoic Acid	DEMDA	277 72 1
Parfluoro 4 Mothowihitanoia Acid		311-13-1 862000 80 F
Nonafluoro-3 6-Diovabentanoio Acid		000090-09-0
ทงกลานงาง-๖,ง-ษางสกะยุเลกงเปลงเน		131/12-30-0

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Serial_No:03062310:45

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308730

Report Date: 03/06/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)					
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).					
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.					
EPA	- Environmental Protection Agency.					
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.					
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.					
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.					
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)					
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)					
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)					
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.					
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.					
MSD	- Matrix Spike Sample Duplicate: Refer to MS.					
NA	- Not Applicable.					
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.					
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.					
NI	- Not Ignitable.					
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.					
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.					
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.					
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.					
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.					
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.					
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.					
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.					
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.					

Report Format: DU Report with 'J' Qualifiers

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308730

Report Date: 03/06/23

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:03062310:45

Project Name: SAND PIT ROAD, TRURO

Project Number: 22129

Lab Number: L2308730

Report Date: 03/06/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SAND PIT ROAD, TRURO Project Number: 22129
 Lab Number:
 L2308730

 Report Date:
 03/06/23

REFERENCES

134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:03062310:45

	CHAIN O	FCU	STO	JY P	AGE	OF	Date R	tec'd in	Lab:	2,	17,	12:	3 4	LPHA	Job #	1: 12	308	37
8 Walkup Drive	320 Forbes Blvd	Project	Informati	ion	William State		Repo	rt Info	rmati	on - Da	ta Deliv	erable	es I	Billing	Inform	ation		
Tel: 508-898-922	20 Tel: 508-822-9300	Project N	ame:SOV	d Pit I	Road, 7	muno	AD	Ex	7	EMAIL		a star	0	I Same	as Client	t info PC) #:	
client Information		Project Lo	ocation: Th	runo,	MA		Regu	latory	Requ	iremen	ts &	Proje	ect Info	ormatic	on Requ	lirement	S	
lient Horstey v	Nitten Group	Project #:	2212	_q			Q Yes		Matrix 3	Spike Re	quired or	n this S	DG? (F	Ye: Required	for MCI	CT RCP P Inorgani	Analytical Meti cs)	hod
ddress: 90 RC	oute wa	Project M	lanager: B	man h	Jassa	,	Yes Ves	No No	GW1 S	tandards S RGP	(Info Re	quired	for Met	als & EF	PH with T	fargets)		
sandwich	1 MA 02563	ALPHA	Quote #:	v			C Othe	er State	/Fed	Program					Criteria _			_
none: 181-24	6-1521	Turn-A	round Tin	ne				/	/	P 15	2	1	1		11	11	/	
Additional Pr RCGW-1 C MCP presi	oject Information: htcha umptive Certa	Date D	ard 🗆	RUSH juniy	confirmed if pre-ap	proved!)	Laza Dor	U ABN U PAL.	S: CMCP 13 DMCP .	Ranges & Tarpas	Ranges & Targets D Ranges	Quant Only DEL	S isotype dut	10Umm	.		SAMPLE INI Filtration Field Lab to do Preservation	FO
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ection Time	Sample Matrix	Sampler Initials	Noc:	METAL C	METALS	EPH: D	D PCB	a d	HH /		/ /	Sar	Lab to do	nts
8730-01	MW-1		2/15/23	1500	gw	CA						X						
-02	MW-2		2/15/23	1215	gw	CA						X						
- 03	MW-3		2/15/23	1330	gw	CA						X						
* **					-5													
														-				
				r														
 Plastic Amber glass 	A= None B= HCI				Conta	iner Type						P	_					
= Vial = Glass = Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Deller	about Day		Pre	eservative						A				1		
= Cube = Other = Encore = BOD Bottle age 33 of 33	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Van Velingui	Isned By: MMJ		2/17/2 2/17/2 2/17/2	3 11:28 3/63 0 3 (93 0	ty	R	eceive	d By:	-	2/1	Date/Tin 712つ 712つ 712	1128 130 33	All sam Alpha's See rev FORM NO	ples subn Terms an verse side 0: 01-01 (rev.	nitted are subj d Conditions. 12-Mar-2012)	ject

ANALYTICAL REPORT

Lab Number:	L2314332
Client:	Horseley & Witten, Inc.
	Sextant Hill Office Park
	90 Route 6A
	Sandwich, MA 02563
ATTN:	Brian Massa
Phone:	(508) 833-6600
Project Name:	SAND PIT TRURO
Project Number:	22129
Report Date:	04/07/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:04072316:42

03/20/23

03/15/23 17:00

 Project Name:
 SAND PIT TRURO
 Lab Number:
 L2314332

 Project Number:
 22129
 Report Date:
 04/07/23

 Alpha
 Sample ID
 Matrix
 Sample Location
 Collection Date/Time
 Receive Date

SAND PIT RD, TRURO

WATER

Page 2 of 26

MW-1

L2314332-01

Project Name: SAND PIT TRURO Project Number: 22129 Lab Number: L2314332 Report Date: 04/07/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SAND PIT TRURO **Project Number:** 22129

Lab Number: L2314332 **Report Date:** 04/07/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Hoi Dais Darian Dailey

Title: Technical Director/Representative

Date: 04/07/23

ORGANICS

SEMIVOLATILES

					Se	rial_No:	04072316:42
Project Name:	SAND PIT TRURO				Lab Num	ber:	L2314332
Project Number:	22129				Report D	ate:	04/07/23
-		SAMPLE	RESULTS		-		
Lab ID: Client ID: Sample Location:	L2314332-01 MW-1 SAND PIT RD, TRURO				Date Collec Date Recei Field Prep:	cted: ived:	03/15/23 17:00 03/20/23 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 134,LCMSMS-ID 04/07/23 00:25 AC				Extraction Extraction	Method: Date:	ALPHA 23528 04/04/23 11:55
Parameter	Acids by Isotone Dilution -	Result	Qualifier	Units	RL	MDL	Dilution Factor
T enhormated Aiky	Acids by isotope Dilution		ab				
Perfluorobutanoic Acid (Pf	FBA)	5.48		ng/l	1.76	0.360	1
Perfluoropentanoic Acid (F	PFPeA)	6.34		ng/l	1.76	0.349	1
Perfluorobutanesulfonic A	cid (PFBS)	9.62		ng/l	1.76	0.210	1
1H,1H,2H,2H-Perfluorohex	kanesulfonic Acid (4:2FTS)	ND		ng/l	1.76	0.399	1
Perfluorohexanoic Acid (P	FHxA)	20.3		ng/l	1.76	0.289	1
Perfluoropentanesulfonic A	Acid (PFPeS)	13.0		ng/l	1.76	0.216	1
Perfluoroheptanoic Acid (F	PFHpA)	43.8		ng/l	1.76	0.199	1
Perfluorohexanesulfonic A	cid (PFHxS)	33.2		ng/l	1.76	0.332	1
Perfluorooctanoic Acid (PF	FOA)	9.36		ng/l	1.76	0.208	1
1H,1H,2H,2H-Perfluorooct	anesulfonic Acid (6:2FTS)	ND		ng/l	1.76	1.18	1
Perfluoroheptanesulfonic A	Acid (PFHpS)	3.62		ng/l	1.76	0.607	1
Perfluorononanoic Acid (P	FNA)	0.791	J	ng/l	1.76	0.275	1
Perfluorooctanesulfonic Ac	cid (PFOS)	238		ng/l	1.76	0.445	1
Perfluorodecanoic Acid (P	FDA)	ND		ng/l	1.76	0.268	1
1H,1H,2H,2H-Perfluorodeo	canesulfonic Acid (8:2FTS)	ND		ng/l	1.76	1.07	1
Perfluorononanesulfonic A	cid (PFNS)	ND		ng/l	1.76	0.988	1
N-Methyl Perfluorooctanes	sulfonamidoacetic Acid	ND		ng/l	1.76	0.572	1
Perfluoroundecanoic Acid	(PFUnA)	ND		ng/l	1.76	0.229	1
Perfluorodecanesulfonic A	cid (PFDS)	ND		ng/l	1.76	0.865	1
Perfluorooctanesulfonamic	de (FOSA)	ND		ng/l	1.76	0.512	1
N-Ethyl Perfluorooctanesu (NEtFOSAA)	Ifonamidoacetic Acid	ND		ng/l	1.76	0.709	1
Perfluorododecanoic Acid	(PFDoA)	ND		ng/l	1.76	0.328	1

ND

ND

1

1

1.76

1.76

ng/l

ng/l

0.289

0.219

Perfluorotridecanoic Acid (PFTrDA)

Perfluorotetradecanoic Acid (PFTA)

					Seri	al_No	0:04072316:42
Project Name:	SAND PIT TRURO				Lab Numb	er:	L2314332
Project Number:	22129				Report Dat	te:	04/07/23
		SAMP	LE RESULTS	6			
Lab ID:	L2314332-01				Date Collect	ed:	03/15/23 17:00
Client ID:	MW-1				Date Receiv	ed:	03/20/23
Sample Location:	SAND PIT RD, TRURO				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	78	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	121	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	74	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	98	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	103	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	72	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	94	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	69	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	76	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62	22-136

Lab Number:

Report Date:

Project Name: SAND PIT TRURO

Project Number: 22129

Method Blank Analysis Batch Quality Control

Analytical Method:134,LCMAnalytical Date:04/06/23Analyst:AC

134,LCMSMS-ID 04/06/23 23:35 AC Extraction Method: ALPHA 23528 Extraction Date: 04/04/23 11:55

L2314332

04/07/23

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01	Batch:	WG1762567-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		0.40	8
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		0.39	6
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.23	8
1H,1H,2H,2H-Perfluorohexanesulfonic Acia (4:2FTS)	ND		ng/l	2.00		0.45	2
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.32	8
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		0.24	5
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.22	5
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.37	6
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.23	6
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1.33	3
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		0.68	8
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.31	2
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.50	4
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.30	4
1H,1H,2H,2H-Perfluorodecanesulfonic Acia (8:2FTS)	d ND		ng/l	2.00		1.21	l
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00		1.12	2
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		0.64	8
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.26	0
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		0.98	0
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		0.58	0
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		0.80	4
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.37	2
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.32	7
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.24	8

Project Name:	SAND PIT TRURO		Lab Number:	L2314332
Project Number:	22129		Report Date:	04/07/23
		Method Blank Analysis Batch Quality Control		

Method	Blank	Anal	ysis
Batch	Quality	Contr	ol

Analytical Method:	134,LCMSMS-ID	Extraction Method:	ALPHA 23528
Analytical Date:	04/06/23 23:35	Extraction Date:	04/04/23 11:55
Analyst:	AC		

Parameter	Result	Qualifier	Units	RL		MDL
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	ab for s	sample(s):	01 Ba	tch: WG1762567-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	91	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	92	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	89	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	97	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	93	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	91	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	36	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	84	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	75	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	61	22-136

Lab Control Sample Analysis Batch Quality Control

Project Number: 22129

Lab Number: L2314332

Report Date: 04/07/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	mple(s): 01	Batch: V	VG1762567-2				
Perfluorobutanoic Acid (PFBA)	105		-		67-148	-		30	
Perfluoropentanoic Acid (PFPeA)	102		-		63-161	-		30	
Perfluorobutanesulfonic Acid (PFBS)	104		-		65-157	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2ETS)	109		-		37-219	-		30	
Perfluorohexanoic Acid (PFHxA)	103		-		69-168	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	107		-		52-156	-		30	
Perfluoroheptanoic Acid (PFHpA)	104		-		58-159	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	104		-		69-177	-		30	
Perfluorooctanoic Acid (PFOA)	103		-		63-159	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	103		-		49-187	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	115		-		61-179	-		30	
Perfluorononanoic Acid (PFNA)	103		-		68-171	-		30	
Perfluorooctanesulfonic Acid (PFOS)	110		-		52-151	-		30	
Perfluorodecanoic Acid (PFDA)	108		-		63-171	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	116		-		56-173	-		30	
Perfluorononanesulfonic Acid (PFNS)	115		-		48-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	94		-		60-166	-		30	
Perfluoroundecanoic Acid (PFUnA)	105		-		60-153	-		30	
Perfluorodecanesulfonic Acid (PFDS)	116		-		38-156	-		30	
Perfluorooctanesulfonamide (FOSA)	107		-		46-170	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	108		-		45-170	-		30	
Perfluorododecanoic Acid (PFDoA)	109		-		67-153	-		30	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2314332 Report Date: 04/07/23

Project Number: 22129

SAND PIT TRURO

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated	sample(s): 01	Batch: WG	61762567-2				
Perfluorotridecanoic Acid (PFTrDA)	113		-		48-158	-		30	
Perfluorotetradecanoic Acid (PFTA)	107		-		59-182	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	94				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	99				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	103				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	94				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	92				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	111				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	108				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	86				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	23				5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	87				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	75				22-136

Matrix Spike Analysis Batch Quality Control

Project Number: 22129

_

Lab Number: L2314332 Report Date: 04/07/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Is	sotope Dilution	- Mansfield	Lab Assoc	ciated sample(s):	01 QC	Batch ID:	WG1762567-3	QC Sample: L	2314332-01	Client ID: M	W-1
Perfluorobutanoic Acid (PFBA)	5.48	37.4	45.0	106		-	-	67-148	-	30	
Perfluoropentanoic Acid (PFPeA)	6.34	37.4	45.2	104		-	-	63-161	-	30	
Perfluorobutanesulfonic Acid (PFBS)	9.62	33.2	45.6	108		-	-	65-157	-	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	35.1	39.4	112		-	-	37-219	-	30	
Perfluorohexanoic Acid (PFHxA)	20.3	37.4	57.6	100		-	-	69-168	-	30	
Perfluoropentanesulfonic Acid (PFPeS)	13.0	35.2	49.6	104		-	-	52-156	-	30	
Perfluoroheptanoic Acid (PFHpA)	43.8	37.4	80.0	97		-	-	58-159	-	30	
Perfluorohexanesulfonic Acid (PFHxS)	33.2	34.2	70.0	108		-	-	69-177	-	30	
Perfluorooctanoic Acid (PFOA)	9.36	37.4	49.2	107		-	-	63-159	-	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	35.6	38.8	109		-	-	49-187	-	30	
Perfluoroheptanesulfonic Acid (PFHpS)	3.62	35.6	44.4	114		-	-	61-179	-	30	
Perfluorononanoic Acid (PFNA)	0.791J	37.4	43.4	114		-	-	68-171	-	30	
Perfluorooctanesulfonic Acid (PFOS)	238	34.7	275	107		-	-	52-151	-	30	
Perfluorodecanoic Acid (PFDA)	ND	37.4	42.3	113		-	-	63-171	-	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	35.9	39.9	111		-	-	56-173	-	30	
Perfluorononanesulfonic Acid (PFNS)	ND	36	38.3	107		-	-	48-150	-	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeEOSAA)	ND	37.4	42.2	113		-	-	60-166	-	30	
Perfluoroundecanoic Acid (PFUnA)	ND	37.4	39.7	106		-	-	60-153	-	30	
Perfluorodecanesulfonic Acid (PFDS)	ND	36.1	40.5	112		-	-	38-156	-	30	
Perfluorooctanesulfonamide (FOSA)	ND	37.4	37.3F	100		-	-	46-170	-	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtEOSAA)	ND	37.4	39.3	105		-	-	45-170	-	30	
Perfluorododecanoic Acid (PFDoA)	ND	37.4	41.8	112		-	-	67-153	-	30	

Matrix Spike Analysis

Project Name:	SAND PIT TRURO	Batch Quality Control
Project Number:	22129	

 Lab Number:
 L2314332

 Report Date:
 04/07/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	, RPD (RPD Qual Limits
Perfluorinated Alkyl Acids by I	sotope Dilution	- Mansfield	Lab Associa	ated sample(s):	01 QC	Batch ID:	WG1762567-3	QC S	Sample: L2	314332-01	1 Client ID: MW-1
Perfluorotridecanoic Acid (PFTrDA)	ND	37.4	40.7	109		-	-		48-158	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	37.4	38.1	102		-	-		59-182	-	30

	MS	S	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101				10-162	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	122				12-142	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	108				14-147	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	77				27-126	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66				24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83				55-137	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	72				62-124	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	73				57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72				60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	104				71-134	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	70				48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70				22-136	
Perfluoro[13C4]Butanoic Acid (MPFBA)	79				58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	89				62-163	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29				5-112	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93				69-131	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	75				62-129	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	72				59-139	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98				70-131	

Lab Duplicate Analysis Batch Quality Control

Project Name: SAND PIT TRURO

Report Date:

Lab Number:

r: L2314332 :: 04/07/23

Project Number: 22129

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution DUP Sample	- Mansfield Lab Associated sam	ple(s): 01 QC Batch ID	: WG1762567-4	QC Sa	ample: L2314333-01 Client ID:
Perfluorobutanoic Acid (PFBA)	4.97	5.08	ng/l	2	30
Perfluoropentanoic Acid (PFPeA)	4.88	5.08	ng/l	4	30
Perfluorobutanesulfonic Acid (PFBS)	1.07J	1.05J	ng/l	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	4.98	4.82	ng/l	3	30
Perfluoropentanesulfonic Acid (PFPeS)	0.230J	0.254J	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	3.40	3.70	ng/l	8	30
Perfluorohexanesulfonic Acid (PFHxS)	3.98F	3.80	ng/l	5	30
Perfluorooctanoic Acid (PFOA)	16.2	16.1	ng/l	1	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	ND	ND	ng/l	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	1.92	1.67J	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	12.9	13.0	ng/l	1	30
Perfluorooctanesulfonic Acid (PFOS)	35.5	35.8	ng/l	1	30
Perfluorodecanoic Acid (PFDA)	1.77J	1.36J	ng/l	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: SAND PIT TRURO

L2314332 04/07/23 Report Date:

Lab Number:

Project Number: 22129

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - DUP Sample	Mansfield Lab Associated sam	ple(s): 01 QC Batch ID	: WG1762567-	4 QC	Sample: L2314333-01 Client ID:
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Surrogate (Extracted Internal Standard)	%Recovery Qualifie	r %Recovery Qualifie	Acceptance r Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	80	77	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88	82	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89	91	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	99	100	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79	74	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	82	72	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94	94	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83	77	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85	90	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75	72	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85	84	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	72	69	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	87	86	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63	55	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	76	73	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	15	5-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	65	56	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60	61	48-131

Project Name: Project Number:	SAND PIT TRURO 22129	Lab Duplicate Analysis Batch Quality Control				Lab Numb Report Da	L2314332 04/07/23		
Parameter		Native Sample	Duplicate	Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acid DUP Sample	s by Isotope Dilution - Mar	nsfield Lab Associa	ted sample(s): 01	QC Batch I	D: WG176256	7-4 QC	Sample: L23	314333-01	Client ID:
Surrogate (E	xtracted Internal Standa	rd)	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	9	

- -

		adalition	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	52	66	22-136

Project Name: SAND PIT TRURO
Project Number: 22129

Serial_No:04072316:42 *Lab Number:* L2314332 *Report Date:* 04/07/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler p	pH P	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2314332-01A	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		A2-537-ISOTOPE(28)	
L2314332-01B	Plastic 250ml unpreserved	А	NA		2.8	Y	Absent		A2-537-ISOTOPE(28)	

YES

Project Number: 22129

Serial_No:04072316:42 Lab Number: L2314332 Report Date: 04/07/23

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA/PFTeDA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Number: 22129

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Project Number: 22129

Lab Number: L2314332

Report Date: 04/07/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 22129

Lab Number: L2314332

Report Date: 04/07/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:04072316:42

Project Name: SAND PIT TRURO

Project Number: 22129

Lab Number: L2314332

Report Date: 04/07/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: SAND PIT TRURO Project Number: 22129

 Lab Number:
 L2314332

 Report Date:
 04/07/23

REFERENCES

134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane. Toxaphene. Aldrin. alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

-									_					Se	rial_No:04072316:42	
	CHAIN O	FCU	STO	DY	PAGE	OF_1	Date	Rec'd i	in Lab:	31	/20/	23	A	LPH	A Job #: 123143	32
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA	Project	Informat	tion			Rep	ort Inf	ormati	on - Data	Deliv	erables	; E	Billing	Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project N	ame: Sal	nd Pit	- Truk	v	-	AX	1					Same	as Client info PO #:	
Client Informatio	n	Project Lo	ocation: Sc	ind p.	+ 04	Thin	A	DEx	Ę.	Add'l De	liverabl	es				
Client: HORSIEN	Witten	Project #	2217	29	a ru,	. 1	Regu	latory	Requir	rements/	Repor	t Limits			The State of the	
Address: 9() P.O.	ute, LOA	Project M	anager: p	man			State	/Fed Pi	rogram		Cri	teria	_			
Sandwich	n, mA	ALPHA C	uote #:	iqui	Total	1200							-			
Phone: 781-2	43-1527	Turn-A	round Tir	ne												
Fax:	0							-	-							
Email: bMassa	@ horsiey witten com	Standa	rd 🗆	RUSH (math	y confirmed if pre-	approved!)	-	15	5	1 1	- /	7.7	7	7		
These samples have	e been previously analyzed by Alpha	Date Due):		Time:		2%	2/17	8	11	1	11	1	/ /	SAMPLE HANDLING	P T
Other Project Sp	pecific Requirements/Com	ments/Det	tection Li	mits:			E	6	1	FF	11		11		Filtration	A L
MCP r	required						AN	F	11			1		1	Done Not needed	
MADEP GW-	1 standards						1/3	El El	11	11		/ /	1	11	Lab to do	8
ALPHA Lab ID			Calla		Canada		14	7 /		11	14		11	1	Lab to do	Ť
(Lab Use Only)	Sample ID		Date	Time	Matrix	Sampler's	PH A	1	11	67.5	/ /	11	1	1	(Please specify below)	E
19332-01	MW-1		3/15/23	1700	gw	CA	X		1 T			11		1	oumple openie comments	
																+-
						-	+ +	-	+-+-		-					-
											_	-				
			_													
																T
																t
																t
																-
								-								-
					Conta	ainer Type									Please print clearly, legibly and o	om-
		Polinguisi	and Dec		Pr	eservative									pletely. Samples can not be logg in and turnaround time clock will	ed not
	Carl		ied By:		Date 2/11-	e/Time	1	Re	eceived	By:		Da	te/Time		start until any ambiguities are res All samples submitted are subject	olved
RM NO: 01-01 (rev. 14-0C)	GOT)	CZ	E		3/17/	1 100	41	FRI	DIGE	0		3/10		00	Alpha's Terms and Conditions.	
Page 26 of 26	Payer	K. Ro	od		3/20	123 9:1	TAN 1	An	1	An		3/2 3/2	991	n	ouo reveise side.	
	NG	N			3/1/1	3 1011	-	1.	-4	su	-	2/2	47	in	.55	